• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 02:20
CEST 08:20
KST 15:20
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
Serral wins EWC 202537Tournament Spotlight: FEL Cracow 202510Power Rank - Esports World Cup 202580RSL Season 1 - Final Week9[ASL19] Finals Recap: Standing Tall15
Community News
[BSL 2025] H2 - Team Wars, Weeklies & SB Ladder9EWC 2025 - Replay Pack4Google Play ASL (Season 20) Announced50BSL Team Wars - Bonyth, Dewalt, Hawk & Sziky teams10Weekly Cups (July 14-20): Final Check-up0
StarCraft 2
General
Serral wins EWC 2025 The GOAT ranking of GOAT rankings Tournament Spotlight: FEL Cracow 2025 Classic: "It's a thick wall to break through to become world champ" Firefly given lifetime ban by ESIC following match-fixing investigation
Tourneys
LiuLi Cup Weeklies and Monthlies Info Sea Duckling Open (Global, Bronze-Diamond) TaeJa vs Creator Bo7 SC Evo Showmatch Sparkling Tuna Cup - Weekly Open Tournament FEL Cracov 2025 (July 27) - $10,000 live event
Strategy
How did i lose this ZvP, whats the proper response
Custom Maps
External Content
Mutation # 484 Magnetic Pull Mutation #239 Bad Weather Mutation # 483 Kill Bot Wars Mutation # 482 Wheel of Misfortune
Brood War
General
Scmdraft 2 - 0.9.0 Preview BW General Discussion [BSL 2025] H2 - Team Wars, Weeklies & SB Ladder Google Play ASL (Season 20) Announced Which top zerg/toss will fail in qualifiers?
Tourneys
[ASL20] Online Qualifiers Day 2 [ASL20] Online Qualifiers Day 1 [Megathread] Daily Proleagues Small VOD Thread 2.0
Strategy
[G] Mineral Boosting Muta micro map competition Does 1 second matter in StarCraft? Simple Questions, Simple Answers
Other Games
General Games
Stormgate/Frost Giant Megathread Nintendo Switch Thread Beyond All Reason Total Annihilation Server - TAForever [MMORPG] Tree of Savior (Successor of Ragnarok)
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
US Politics Mega-thread Things Aren’t Peaceful in Palestine European Politico-economics QA Mega-thread Canadian Politics Mega-thread Stop Killing Games - European Citizens Initiative
Fan Clubs
INnoVation Fan Club SKT1 Classic Fan Club!
Media & Entertainment
Anime Discussion Thread [\m/] Heavy Metal Thread Movie Discussion! [Manga] One Piece Korean Music Discussion
Sports
Formula 1 Discussion 2024 - 2025 Football Thread TeamLiquid Health and Fitness Initiative For 2023
World Cup 2022
Tech Support
Gtx660 graphics card replacement Installation of Windows 10 suck at "just a moment" Computer Build, Upgrade & Buying Resource Thread
TL Community
TeamLiquid Team Shirt On Sale The Automated Ban List
Blogs
ASL S20 English Commentary…
namkraft
The Link Between Fitness and…
TrAiDoS
momentary artworks from des…
tankgirl
from making sc maps to makin…
Husyelt
StarCraft improvement
iopq
Socialism Anyone?
GreenHorizons
Customize Sidebar...

Website Feedback

Closed Threads



Active: 607 users

Math puzzle #2 - Page 2

Blogs > LastPrime
Post a Reply
Prev 1 2 All
Steve496
Profile Joined July 2009
United States60 Posts
September 10 2010 06:36 GMT
#21
Why does CRT force d=p^n?
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 06:54:09
September 10 2010 06:43 GMT
#22
On September 10 2010 15:30 gondolin wrote:
We may assume by the CRT that d=p^n, with p odd, the case p=2 being trivial.
Now by induction, there exist N such that 2^N+N=0 mod phi(d).
Write 2^N+N + k phi(d) =0.
Then 2^(N+k phi(d)) + (N + k phi(d)) = 2^N+N+k phi(d) = 0 mod p^n.
CQFD.


Show nested quote +
On September 10 2010 13:20 mieda wrote:
Now back to preparing lecture notes for serre duality and its applications to riemann roch type theorems..


Nice. Will you use it to prove the Hasse-Weil theorem on the zeta function of algebraic curve? From what I remember you can prove it without the classical proof from Weil with Jacobians by clever user of the Riemann-Roch (the hardest part being the Riemann hypothesis, with Jacobians you have the Rosati involution, here I don't remember how you do it).

By the way I infer from your signature that you are working on Complex Multiplication? That's one of the most beautiful area in Mathematics (according to Hilbert )!


Riemann Roch is useful for just about everything involving curves (ofc there is an analogue for surfaces.. but the formulas get nasty when dimensions rise)! I'm preparing the notes as a background for students who are starting to count dimensions of automorphic forms of various weights. They'll need to know some dimension theory on the complex surfaces formed from congruence subgroups, and that's just riemann roch ^^. Actually you don't need serre duality for proof of riemann roch theorems, especially if one is only working over the complexes, but the idea is nice enough

I'm not really working on complex multiplication per se. That's more lower dimension (i.e. elliptic curves). Of course there are analogues for higher dimensional abelian varieties, but the thing I work on is nice combinatorial descriptions (if I can!) of cohomology of rapoport-zink spaces.

Also, you should probably fill in more detail for reduction to d = p^n case. Chinese Remainder Theorem directly doesn't apply, as you will see. The problem is that the modulus are not pair-wise coprime when you apply it directly. But it just takes a little more work to get it to work.

Are you working on math also?
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 06:51:59
September 10 2010 06:44 GMT
#23
On September 10 2010 15:36 Steve496 wrote:
Why does CRT force d=p^n?


It doesn't, not directly at least. You still need to work a little bit to reduce to the d = p^n case. The moduli are not pair-wise coprime when you try to apply it directly, but just takes a little more massage to get it to work.
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 06:58:29
September 10 2010 06:55 GMT
#24
+ Show Spoiler +
Solution


Other nice problem
gondolin
Profile Blog Joined September 2007
France332 Posts
September 10 2010 07:50 GMT
#25
On September 10 2010 15:43 mieda wrote:
Show nested quote +
On September 10 2010 15:30 gondolin wrote:
We may assume by the CRT that d=p^n, with p odd, the case p=2 being trivial.
Now by induction, there exist N such that 2^N+N=0 mod phi(d).
Write 2^N+N + k phi(d) =0.
Then 2^(N+k phi(d)) + (N + k phi(d)) = 2^N+N+k phi(d) = 0 mod p^n.
CQFD.


On September 10 2010 13:20 mieda wrote:
Now back to preparing lecture notes for serre duality and its applications to riemann roch type theorems..


Nice. Will you use it to prove the Hasse-Weil theorem on the zeta function of algebraic curve? From what I remember you can prove it without the classical proof from Weil with Jacobians by clever user of the Riemann-Roch (the hardest part being the Riemann hypothesis, with Jacobians you have the Rosati involution, here I don't remember how you do it).

By the way I infer from your signature that you are working on Complex Multiplication? That's one of the most beautiful area in Mathematics (according to Hilbert )!


Riemann Roch is useful for just about everything involving curves (ofc there is an analogue for surfaces.. but the formulas get nasty when dimensions rise)! I'm preparing the notes as a background for students who are starting to count dimensions of automorphic forms of various weights. They'll need to know some dimension theory on the complex surfaces formed from congruence subgroups, and that's just riemann roch ^^. Actually you don't need serre duality for proof of riemann roch theorems, especially if one is only working over the complexes, but the idea is nice enough


Yes, the "nice" generalisation is Grothendieck-Riemann-Roch, but it is harder to expose
(But I still find it beautiful that Riemann-Roch is a relative theorem)


I'm not really working on complex multiplication per se. That's more lower dimension (i.e. elliptic curves). Of course there are analogues for higher dimensional abelian varieties, but the thing I work on is nice combinatorial descriptions (if I can!) of cohomology of rapoport-zink spaces.


Well Complex Multiplication on elliptic curves is known since Kronecker. (The fact that the j-invariant give the Hilbert class field of Imaginary Quadratic fields). The work of Shimura was to generalize this to abelian varieties. (The modular invariants of an abelian variety with CM by K lies in the Hilbert class field of the reflex field + the reciprocity law expressing the action of the Galois group in term of the type norm of the ideals of the reflex field.)


Also, you should probably fill in more detail for reduction to d = p^n case. Chinese Remainder Theorem directly doesn't apply, as you will see. The problem is that the modulus are not pair-wise coprime when you apply it directly. But it just takes a little more work to get it to work.

Are you working on math also?


Yeah that's true, you need to keep track of the congruent relations of the N_i solution for p_i to verify you can "glue" the solutions. (That's funny how the point of view change, before I thought of the CRT as an arithmetic statement, now when I think about it I visualize it as local sections over Spec(Z/NZ) that we try to glue).

I have a background in mathematics, but now I am working on computer science By the way I see that you are from Harvard. Do you know Sophie Morel? She attended the same "college" as me and is very good
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 08:21:41
September 10 2010 07:55 GMT
#26

Yeah that's true, you need to keep track of the congruent relations of the N_i solution for p_i to verify you can "glue" the solutions. (That's funny how the point of view change, before I thought of the CRT as an arithmetic statement, now when I think about it I visualize it as local sections over Spec(Z/NZ) that we try to glue).


Yea, that's actually a nice way to visualize it.


I have a background in mathematics, but now I am working on computer science By the way I see that you are from Harvard. Do you know Sophie Morel? She attended the same "college" as me and is very good



Oh good. Yes, of course I know Sophie Morel, she's a new professor here. But I don't see her here nowadays. I presume she's visiting IAS now with the big number theory thing going on there this year.

It's interesting to see another person who did math in TL.net ^^.
gondolin
Profile Blog Joined September 2007
France332 Posts
September 10 2010 08:21 GMT
#27

It's interesting to see another person who did math in TL.net ^^. Did you play SC also?


There is a user (Muirhead I think) that is also doing math (he works on algebraic geometry in MIT).
Yeah I discovered SC when I went to the "college" I mentioned. I played warcraft 3 before, but once I discovered SC i switched
Ivs
Profile Joined January 2008
Australia139 Posts
September 10 2010 12:08 GMT
#28
There is a generalisation to this:
Fixing any a, d, k, and gcd(d,k)=1
ka^x = x mod d
always has infinitely many solutions x.

Proof:
+ Show Spoiler +

let x=ka^y mod d
then all we need to do is to find infinitely many y satisfying
a^(ka^y) = a^y mod d
But since for any a, powers of a in mod d eventually cycles in period phi(d), it is sufficient to find infinitely many solutions to
ka^y = y mod phi(d)
now phi(d)<d so this is the same problem in a smaller mod. The result is certain true for d=1, induction cleans up the rest.


Setting a=2, k=-1 solves your question =).
Plexa
Profile Blog Joined October 2005
Aotearoa39261 Posts
September 10 2010 13:04 GMT
#29
On September 10 2010 17:21 gondolin wrote:
Show nested quote +

It's interesting to see another person who did math in TL.net ^^. Did you play SC also?


There is a user (Muirhead I think) that is also doing math (he works on algebraic geometry in MIT).
Yeah I discovered SC when I went to the "college" I mentioned. I played warcraft 3 before, but once I discovered SC i switched

And I just finished my undergrad in Math! Yay! Now doing some work in Topology :3
Administrator~ Spirit will set you free ~
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 15:24:09
September 10 2010 15:23 GMT
#30
On September 10 2010 21:08 Ivs wrote:
There is a generalisation to this:
Fixing any a, d, k, and gcd(d,k)=1
ka^x = x mod d
always has infinitely many solutions x.

Proof:
+ Show Spoiler +

let x=ka^y mod d
then all we need to do is to find infinitely many y satisfying
a^(ka^y) = a^y mod d
But since for any a, powers of a in mod d eventually cycles in period phi(d), it is sufficient to find infinitely many solutions to
ka^y = y mod phi(d)
now phi(d)<d so this is the same problem in a smaller mod. The result is certain true for d=1, induction cleans up the rest.


Setting a=2, k=-1 solves your question =).


The problem is that x = ka^y mod d doesn't imply a^(ka^y) = a^x (mod d).
Ivs
Profile Joined January 2008
Australia139 Posts
Last Edited: 2010-09-10 16:07:47
September 10 2010 15:55 GMT
#31
On September 11 2010 00:23 mieda wrote:
Show nested quote +
On September 10 2010 21:08 Ivs wrote:
There is a generalisation to this:
Fixing any a, d, k, and gcd(d,k)=1
ka^x = x mod d
always has infinitely many solutions x.

Proof:
+ Show Spoiler +

let x=ka^y mod d
then all we need to do is to find infinitely many y satisfying
a^(ka^y) = a^y mod d
But since for any a, powers of a in mod d eventually cycles in period phi(d), it is sufficient to find infinitely many solutions to
ka^y = y mod phi(d)
now phi(d)<d so this is the same problem in a smaller mod. The result is certain true for d=1, induction cleans up the rest.


Setting a=2, k=-1 solves your question =).


The problem is that x = ka^y mod d doesn't imply a^(ka^y) = a^x (mod d).


I didn't say it implies, rather, it is suffice to solve the second equation to obtain a solution to the first.

edit: More specifically,
If x = ka^y, then
ka^x = x mod d if and only if a^(ka^y) = a^y mod d
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 19:55:57
September 10 2010 17:07 GMT
#32
On September 11 2010 00:55 Ivs wrote:
Show nested quote +
On September 11 2010 00:23 mieda wrote:
On September 10 2010 21:08 Ivs wrote:
There is a generalisation to this:
Fixing any a, d, k, and gcd(d,k)=1
ka^x = x mod d
always has infinitely many solutions x.

Proof:
+ Show Spoiler +

let x=ka^y mod d
then all we need to do is to find infinitely many y satisfying
a^(ka^y) = a^y mod d
But since for any a, powers of a in mod d eventually cycles in period phi(d), it is sufficient to find infinitely many solutions to
ka^y = y mod phi(d)
now phi(d)<d so this is the same problem in a smaller mod. The result is certain true for d=1, induction cleans up the rest.


Setting a=2, k=-1 solves your question =).


The problem is that x = ka^y mod d doesn't imply a^(ka^y) = a^x (mod d).


I didn't say it implies, rather, it is suffice to solve the second equation to obtain a solution to the first.

edit: More specifically,
If x = ka^y, then
ka^x = x mod d if and only if a^(ka^y) = a^y mod d


Sure, but when k < 0 you're raising a to a negative power. For example in our case a = 2 and k = -1, you're saying -2^x = x (mod d) iff 2^(-2^y) = 2^y mod d, and how will you interpret 2^(-2^y) ? it's not an integer.

Also, in your original proof you wrote x = ka^y (mod d), thus sufficient to solve a^(ka^y) = a^y mod d, from which I thought that you seemed to be saying that if x = ka^y (mod d) then a^x = a^(ka^y) mod d, which isn't true.

Remark: When k > 0, the remark I made earlier in this thread is exactly this method. This solution doesn't seem to work, because we have k < 0 now. I made the remark that when we have to solve 2^N = N (mod d) and not 2^N = -N (mod d), then it's a bit easier.

Edit: There is a way to fix this argument, and that is to choose k so that gcd(d,k) = 1 and k > 0 by adding d to it sufficient number of times.
KristianJS
Profile Joined October 2009
2107 Posts
September 10 2010 17:23 GMT
#33
This exercise taught me a useful lesson in how the normal conditions given for CRT are stronger than necessary
You need to be 100% behind someone before you can stab them in the back
mieda
Profile Blog Joined February 2010
United States85 Posts
September 10 2010 19:06 GMT
#34
On September 11 2010 02:23 KristianJS wrote:
This exercise taught me a useful lesson in how the normal conditions given for CRT are stronger than necessary


The exercise has served its purpose!

Ivs
Profile Joined January 2008
Australia139 Posts
September 11 2010 02:30 GMT
#35
On September 11 2010 02:07 mieda wrote:
Show nested quote +
On September 11 2010 00:55 Ivs wrote:
On September 11 2010 00:23 mieda wrote:
On September 10 2010 21:08 Ivs wrote:
There is a generalisation to this:
Fixing any a, d, k, and gcd(d,k)=1
ka^x = x mod d
always has infinitely many solutions x.

Proof:
+ Show Spoiler +

let x=ka^y mod d
then all we need to do is to find infinitely many y satisfying
a^(ka^y) = a^y mod d
But since for any a, powers of a in mod d eventually cycles in period phi(d), it is sufficient to find infinitely many solutions to
ka^y = y mod phi(d)
now phi(d)<d so this is the same problem in a smaller mod. The result is certain true for d=1, induction cleans up the rest.


Setting a=2, k=-1 solves your question =).


The problem is that x = ka^y mod d doesn't imply a^(ka^y) = a^x (mod d).


I didn't say it implies, rather, it is suffice to solve the second equation to obtain a solution to the first.

edit: More specifically,
If x = ka^y, then
ka^x = x mod d if and only if a^(ka^y) = a^y mod d


Sure, but when k < 0 you're raising a to a negative power. For example in our case a = 2 and k = -1, you're saying -2^x = x (mod d) iff 2^(-2^y) = 2^y mod d, and how will you interpret 2^(-2^y) ? it's not an integer.

Also, in your original proof you wrote x = ka^y (mod d), thus sufficient to solve a^(ka^y) = a^y mod d, from which I thought that you seemed to be saying that if x = ka^y (mod d) then a^x = a^(ka^y) mod d, which isn't true.

Remark: When k > 0, the remark I made earlier in this thread is exactly this method. This solution doesn't seem to work, because we have k < 0 now. I made the remark that when we have to solve 2^N = N (mod d) and not 2^N = -N (mod d), then it's a bit easier.

Edit: There is a way to fix this argument, and that is to choose k so that gcd(d,k) = 1 and k > 0 by adding d to it sufficient number of times.


I did impose gcd(d,k) = 1, read the whole thing =P. You are right about the negative part though, and yup it is easily fixed.
mieda
Profile Blog Joined February 2010
United States85 Posts
September 11 2010 02:36 GMT
#36

I did impose gcd(d,k) = 1, read the whole thing =P. You are right about the negative part though, and yup it is easily fixed.


I read the whole thing. Only the $k > 0$ is meant to be new. You should read my last sentencen as "gcd(d,k) = 1" *and also* "k > 0"

Ivs
Profile Joined January 2008
Australia139 Posts
September 11 2010 02:43 GMT
#37
On September 11 2010 11:36 mieda wrote:
Show nested quote +

I did impose gcd(d,k) = 1, read the whole thing =P. You are right about the negative part though, and yup it is easily fixed.


I read the whole thing. Only the $k > 0$ is meant to be new. You should read my last sentencen as "gcd(d,k) = 1" *and also* "k > 0"


Oh right, fair enough (=.
Prev 1 2 All
Please log in or register to reply.
Live Events Refresh
Next event in 3h 40m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
WinterStarcraft605
Nina 276
StarCraft: Brood War
Calm 16791
ggaemo 1548
Barracks 1168
Hyun 551
JYJ183
Sacsri 70
Sexy 53
firebathero 46
Aegong 43
yabsab 34
Dota 2
monkeys_forever748
NeuroSwarm141
League of Legends
JimRising 716
Counter-Strike
Stewie2K871
Heroes of the Storm
Khaldor155
Other Games
summit1g9732
Mew2King104
Livibee82
Organizations
StarCraft: Brood War
Afreeca ASL 2826
UltimateBattle 222
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 15 non-featured ]
StarCraft 2
• Hupsaiya 83
• practicex 60
• Sammyuel 8
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
League of Legends
• Lourlo1357
Counter-Strike
• davetesta52
Upcoming Events
Sparkling Tuna Cup
3h 40m
BSL20 Non-Korean Champi…
7h 40m
Bonyth vs TBD
WardiTV European League
9h 40m
ByuN vs ShoWTimE
HeRoMaRinE vs MaxPax
Wardi Open
1d 4h
OSC
1d 17h
uThermal 2v2 Circuit
3 days
The PondCast
4 days
Replay Cast
4 days
uThermal 2v2 Circuit
5 days
RSL Revival
5 days
[ Show More ]
RSL Revival
6 days
uThermal 2v2 Circuit
6 days
Liquipedia Results

Completed

ASL Season 20: Qualifier #1
FEL Cracow 2025
CC Div. A S7

Ongoing

Copa Latinoamericana 4
Jiahua Invitational
BSL 20 Team Wars
KCM Race Survival 2025 Season 3
BSL 21 Qualifiers
ASL Season 20: Qualifier #2
HCC Europe
IEM Cologne 2025
FISSURE Playground #1
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025

Upcoming

ASL Season 20
CSLPRO Chat StarLAN 3
BSL Season 21
RSL Revival: Season 2
Maestros of the Game
SEL Season 2 Championship
WardiTV Summer 2025
uThermal 2v2 Main Event
Thunderpick World Champ.
MESA Nomadic Masters Fall
CAC 2025
Roobet Cup 2025
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.