• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EST 21:42
CET 03:42
KST 11:42
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
RSL Revival - 2025 Season Finals Preview8RSL Season 3 - Playoffs Preview0RSL Season 3 - RO16 Groups C & D Preview0RSL Season 3 - RO16 Groups A & B Preview2TL.net Map Contest #21: Winners12
Community News
ComeBackTV's documentary on Byun's Career !3Weekly Cups (Dec 8-14): MaxPax, Clem, Cure win2Weekly Cups (Dec 1-7): Clem doubles, Solar gets over the hump1Weekly Cups (Nov 24-30): MaxPax, Clem, herO win2BGE Stara Zagora 2026 announced15
StarCraft 2
General
ComeBackTV's documentary on Byun's Career ! Weekly Cups (Dec 8-14): MaxPax, Clem, Cure win Did they add GM to 2v2? RSL Revival - 2025 Season Finals Preview Weekly Cups (Dec 1-7): Clem doubles, Solar gets over the hump
Tourneys
RSL Offline Finals Info - Dec 13 and 14! Master Swan Open (Global Bronze-Master 2) Winter Warp Gate Amateur Showdown #1: Sparkling Tuna Cup - Weekly Open Tournament $5,000+ WardiTV 2025 Championship
Strategy
Custom Maps
Map Editor closed ?
External Content
Mutation # 504 Retribution Mutation # 503 Fowl Play Mutation # 502 Negative Reinforcement Mutation # 501 Price of Progress
Brood War
General
How Rain Became ProGamer in Just 3 Months FlaSh on: Biggest Problem With SnOw's Playstyle BGH Auto Balance -> http://bghmmr.eu/ [BSL21] RO8 Bracket & Prediction Contest BW General Discussion
Tourneys
[BSL21] WB SEMIFINALS - Saturday 21:00 CET [Megathread] Daily Proleagues [BSL21] RO8 - Day 2 - Sunday 21:00 CET [ASL20] Grand Finals
Strategy
Game Theory for Starcraft Current Meta Simple Questions, Simple Answers Fighting Spirit mining rates
Other Games
General Games
Path of Exile Stormgate/Frost Giant Megathread General RTS Discussion Thread Dawn of War IV Nintendo Switch Thread
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
Mafia Game Mode Feedback/Ideas Survivor II: The Amazon Sengoku Mafia TL Mafia Community Thread
Community
General
Russo-Ukrainian War Thread US Politics Mega-thread Things Aren’t Peaceful in Palestine YouTube Thread European Politico-economics QA Mega-thread
Fan Clubs
White-Ra Fan Club
Media & Entertainment
Anime Discussion Thread [Manga] One Piece Movie Discussion!
Sports
2024 - 2026 Football Thread Formula 1 Discussion
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
TL+ Announced Where to ask questions and add stream?
Blogs
How Sleep Deprivation Affect…
TrAiDoS
I decided to write a webnov…
DjKniteX
James Bond movies ranking - pa…
Topin
Thanks for the RSL
Hildegard
Customize Sidebar...

Website Feedback

Closed Threads



Active: 2042 users

Math puzzle #2

Blogs > LastPrime
Post a Reply
1 2 Next All
LastPrime
Profile Blog Joined May 2010
United States109 Posts
Last Edited: 2010-09-10 01:42:33
September 09 2010 23:24 GMT
#1
Ok guys, the last puzzle was so easy my 7 year old sister could do it (it was her homework from her math class in kindergarten). Here's one for the grown ups:

Prove that for any positive integer d,there is an integer N for which d| 2^N+N. (means d divides 2^N+N evenly)


edit:
+ Show Spoiler +
Hint:
1) if gcd(2,n) = 1 then 2^(phi(n)) = 1 (mod n)
where phi(n) is the number of integers in {1,2,3,4,...n} that are relatively prime to n

2) Chinese remainder theorem


Hall of Fame
1. Steve496


Hidden_MotiveS
Profile Blog Joined February 2010
Canada2562 Posts
Last Edited: 2010-09-09 23:36:32
September 09 2010 23:29 GMT
#2
Spoilers+ Show Spoiler +
I give up


edit: working on it.
BottleAbuser
Profile Blog Joined December 2007
Korea (South)1888 Posts
Last Edited: 2010-09-10 00:11:28
September 09 2010 23:32 GMT
#3
Trivial solution: N = 0 works for all positive integers.

For powers of 2 (d = 2^k), d divides 2^k. It might not divide 2^k + k. However, we know that it divides all multiples of 2^k, including 2^(k+1), 2^(k+2), and so on, until we reach at most 2^(d). Then we know that d divides 2^d+d.


2^N % d = a.

Then 2^(N+1) % d = 2a % d
Then 2^(N+2) % d = 4a % d
And so on. If d is even, then eventually we'll find ka % d = 0, and multiples of that (N>k) can be used until the constant term +N comes around to a multiple of d.

time for classes... I'll give it another go later...
Compilers are like boyfriends, you miss a period and they go crazy on you.
Seth_
Profile Blog Joined July 2010
Belgium184 Posts
September 10 2010 00:38 GMT
#4
If d is even, then eventually we'll find ka % d = 0

d=6
start at N=2
2^2 % 6 = 4 = a
2^3 % 6 = 2
2^4 % 6 = 4
2^5 % 6 = 2
2^6 % 6 = 4
2^7 % 6 = 2
...
We'll never get to a 'k' for which ka%d=0
BottleAbuser
Profile Blog Joined December 2007
Korea (South)1888 Posts
Last Edited: 2010-09-10 01:03:21
September 10 2010 00:44 GMT
#5
I'm tempted to say that any loop is fine, because we're adding increments of 1 to the total modulus with each next term.

The point was that if 2^N % d = 0, then we can increment N until the remaining +N is also divisible by d.

If we can't increase 2^N to be divisible by d, then obviously we have entered a loop, over which we can keep increasing the remaining +N until the total is divisible by d.

If any loop is okay, then this should work for odd numbers as well.


====
to summarize

For any d, take an arbitrary N.

Let a = 2^N % d
Let b = N % d

If a + b = 0 or d, we are finished.

Now, we see if a * 2^k % d = 0 for any k. We need to increment k a maximum of d times before the modulus value begins looping or reaches 0.

In the case that it reaches 0, we only need to increment N a maximum of d more times before the value 2^N + N % d = 0.

In the case that it loops, we find the values of N where 2^(N+kb) % d = a. That is, the loop has a period of k numbers, and b is the number of total cycles. As long as k % d != 0, we can increment b until the constant added at the end matches up and the remainder becomes 0.

... I realize this still isn't proof to work for all numbers, just a lot of them...
Compilers are like boyfriends, you miss a period and they go crazy on you.
Exteray
Profile Blog Joined June 2007
United States1094 Posts
September 10 2010 01:32 GMT
#6
Need a hint... will Fermat's Little Theorem come in handy here?
BottleAbuser
Profile Blog Joined December 2007
Korea (South)1888 Posts
September 10 2010 01:39 GMT
#7
The proof for Fermat's Little Theorem looks like it could readily be adapted for this.
Compilers are like boyfriends, you miss a period and they go crazy on you.
LastPrime
Profile Blog Joined May 2010
United States109 Posts
Last Edited: 2010-09-10 01:42:47
September 10 2010 01:40 GMT
#8
Hint:
1) if gcd(2,n) = 1 then 2^(phi(n)) = 1 (mod n)
where phi(n) is the number of integers in {1,2,3,4,...n} that are relatively prime to n

2) Chinese remainder theorem

These are some of the standard tools for solving IMO-type problems.

Good luck!
Slithe
Profile Blog Joined February 2007
United States985 Posts
September 10 2010 01:59 GMT
#9
I kinda wanna take a crack at this problem, but it also kinda feels like I'm doing discrete math homework all over again.

I'll probably give it a bit of a shot and give up because I'm lame.
TanGeng
Profile Blog Joined January 2009
Sanya12364 Posts
September 10 2010 02:04 GMT
#10
I think we can start by looking when the modulus on 2^N repeats.

First start by expression d as
2^e * m where GCD(m, 2) = 1 and e is a non-negative integer
Candidate solutions will when N > e and is some multiple of 2^e. note GCD(m, 2^e) = 1

now when m = 1 we trivial solution
N = 2^e

by the Totient theorem will get repetitive modulo on phi(m)
because 2^phi(m) % m = 1
repetition is over values less than m and relatively prime to m (multiplied by 2^e)

Now for the totients:
for all primes t and positive integer n : phi(t^n) = t^(n-1)* (t-1)
for all positive integers p & q where GCD(p,q) = 1 : phi(p*q) = phi(p) * phi(q)

seems to get complicated from here on... hmmm
To be continued...
Moderator我们是个踏实的赞助商模式俱乐部
Slithe
Profile Blog Joined February 2007
United States985 Posts
September 10 2010 02:59 GMT
#11
I think I may have a solution for the odd numbers:

+ Show Spoiler +

for any odd d, N=d-1 will give us the desired result.

With the theorem that lastprime gave us, we see the following:
gcd(d,d-1) = 1
2^(d-1) = 1 mod d
2^(d-1) + d-1 = 0 mod d

I'm trying to use this to tackle the even numbers as well, with the idea that any even number d = c*(2^x). However, this is all pointless if my earlier conclusion is incorrect.
infinitestory
Profile Blog Joined April 2010
United States4053 Posts
September 10 2010 03:07 GMT
#12
I think this gets messy only because m could be even, which means we need to split into an odd case and an (even harder) even case, and phi(m) often shares factors with m, so looping by adding phi(m) isn't guaranteed to work.
Translator:3
Snuggles
Profile Blog Joined May 2010
United States1865 Posts
September 10 2010 03:11 GMT
#13
So are all of you guys math majors? This problem looks so intimidating I don't even want to touch it haha.
TanGeng
Profile Blog Joined January 2009
Sanya12364 Posts
Last Edited: 2010-09-10 03:24:49
September 10 2010 03:21 GMT
#14
On September 10 2010 11:59 Slithe wrote:
I think I may have a solution for the odd numbers:

+ Show Spoiler +

for any odd d, N=d-1 will give us the desired result.

With the theorem that lastprime gave us, we see the following:
gcd(d,d-1) = 1
2^(d-1) = 1 mod d
2^(d-1) + d-1 = 0 mod d

I'm trying to use this to tackle the even numbers as well, with the idea that any even number d = c*(2^x). However, this is all pointless if my earlier conclusion is incorrect.


Only true for prime numbers.

Even numbers aren't too bad. Just factor out the powers of 2 will be sufficient and that will reduce it to an odd number problem. Maybe I'm missing it but the non-prime odd values are the hardest part to solve.
Moderator我们是个踏实的赞助商模式俱乐部
Slithe
Profile Blog Joined February 2007
United States985 Posts
September 10 2010 03:37 GMT
#15
On September 10 2010 12:21 TanGeng wrote:
Show nested quote +
On September 10 2010 11:59 Slithe wrote:
I think I may have a solution for the odd numbers:

+ Show Spoiler +

for any odd d, N=d-1 will give us the desired result.

With the theorem that lastprime gave us, we see the following:
gcd(d,d-1) = 1
2^(d-1) = 1 mod d
2^(d-1) + d-1 = 0 mod d

I'm trying to use this to tackle the even numbers as well, with the idea that any even number d = c*(2^x). However, this is all pointless if my earlier conclusion is incorrect.


Only true for prime numbers.

Even numbers aren't too bad. Just factor out the powers of 2 will be sufficient and that will reduce it to an odd number problem. Maybe I'm missing it but the non-prime odd values are the hardest part to solve.


Oh I misread the theorem. Back to the drawing board...
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 19:18:27
September 10 2010 04:20 GMT
#16
If you need more hints let me know and I'll post some more hints here.

Edit: I suggested this problem to LastPrime for a little Math Puzzle Time in TL.net, so it'd defeat the purpose of me releasing my solution here. We'll post some harder ones once this is solved. Enjoy~

An easier version of this problem is the following: Every positive integer d divides 2^N - N for some N, in which case the idea of looking at cycles work, i.e. 2, 2^2, 2^(2^2), 2^(2^(2^2)), ... eventually becomes constant mod d for any positive integer d. In fact you can bound the cycle length, and get a rather nice expression for an explicit solution for N in terms of d.

Also, I'm on #math of efnet IRC and freenode, ID: hochs. If you want more lively math chat, I'm there and you can /msg me for some fun

Now back to preparing lecture notes for serre duality and its applications to riemann roch type theorems..
Steve496
Profile Joined July 2009
United States60 Posts
Last Edited: 2010-09-10 05:17:58
September 10 2010 05:17 GMT
#17
The solution is more or less obvious for powers of 2 and when d and phi(d) are relatively prime (which notably includes all primes). It's a little less clear to me how to extend the argument to deal with d and phi(d) having a common factor.

(As an aside, for those of you who like this sort of thing, I highly recommend Project Euler. Good times.)
Oracle
Profile Blog Joined May 2007
Canada411 Posts
September 10 2010 05:38 GMT
#18
Lol i had this EXACT problem in a Math 135 assignment at the university of waterloo last year
mieda
Profile Blog Joined February 2010
United States85 Posts
September 10 2010 05:40 GMT
#19
On September 10 2010 14:38 Oracle wrote:
Lol i had this EXACT problem in a Math 135 assignment at the university of waterloo last year


Oh, is that where it's from? ^^ It's a nice exercise in chinese remainder theorem
gondolin
Profile Blog Joined September 2007
France332 Posts
September 10 2010 06:30 GMT
#20
We may assume by the CRT that d=p^n, with p odd, the case p=2 being trivial.
Now by induction, there exist N such that 2^N+N=0 mod phi(d).
Write 2^N+N + k phi(d) =0.
Then 2^(N+k phi(d)) + (N + k phi(d)) = 2^N+N+k phi(d) = 0 mod p^n.
CQFD.


On September 10 2010 13:20 mieda wrote:
Now back to preparing lecture notes for serre duality and its applications to riemann roch type theorems..


Nice. Will you use it to prove the Hasse-Weil theorem on the zeta function of algebraic curve? From what I remember you can prove it without the classical proof from Weil with Jacobians by clever user of the Riemann-Roch (the hardest part being the Riemann hypothesis, with Jacobians you have the Rosati involution, here I don't remember how you do it).

By the way I infer from your signature that you are working on Complex Multiplication? That's one of the most beautiful area in Mathematics (according to Hilbert )!
1 2 Next All
Please log in or register to reply.
Live Events Refresh
Next event in 7h 18m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
JimRising 620
PiGStarcraft422
RuFF_SC2 98
StarCraft: Brood War
Bale 163
Noble 19
Mong 9
Dota 2
NeuroSwarm94
LuMiX1
League of Legends
C9.Mang0445
Nathanias32
Super Smash Bros
hungrybox311
Other Games
summit1g11967
Day[9].tv973
Maynarde107
Trikslyr73
Mew2King51
ViBE41
Organizations
Other Games
gamesdonequick950
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 15 non-featured ]
StarCraft 2
• Hupsaiya 97
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• mYiSmile113
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• masondota21622
League of Legends
• Doublelift4798
Other Games
• Day9tv973
Upcoming Events
The PondCast
7h 18m
WardiTV 2025
10h 18m
Cure vs Creator
Solar vs TBD
herO vs Spirit
Scarlett vs Gerald
Rogue vs Shameless
MaNa vs ShoWTimE
Nice vs TBD
WardiTV 2025
1d 8h
OSC
1d 11h
CranKy Ducklings
2 days
SC Evo League
2 days
Ladder Legends
2 days
BSL 21
2 days
Sziky vs Dewalt
eOnzErG vs Cross
Sparkling Tuna Cup
3 days
Ladder Legends
3 days
[ Show More ]
BSL 21
3 days
StRyKeR vs TBD
Bonyth vs TBD
Replay Cast
4 days
Monday Night Weeklies
4 days
WardiTV Invitational
6 days
Liquipedia Results

Completed

Acropolis #4 - TS3
RSL Offline Finals
Kuram Kup

Ongoing

C-Race Season 1
IPSL Winter 2025-26
KCM Race Survival 2025 Season 4
YSL S2
BSL Season 21
Slon Tour Season 2
WardiTV 2025
META Madness #9
eXTREMESLAND 2025
SL Budapest Major 2025
ESL Impact League Season 8
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025
Thunderpick World Champ.
CS Asia Championships 2025
ESL Pro League S22

Upcoming

CSL 2025 WINTER (S19)
BSL 21 Non-Korean Championship
Acropolis #4
IPSL Spring 2026
Bellum Gens Elite Stara Zagora 2026
HSC XXVIII
Big Gabe Cup #3
OSC Championship Season 13
ESL Pro League Season 23
PGL Cluj-Napoca 2026
IEM Kraków 2026
BLAST Bounty Winter 2026
BLAST Bounty Winter Qual
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.