I'm a Math student by the by and my project is pretty interesting and the basics of it are simple to understand. Also it is very applicable, which is nice, so I thought maybe some people on TL would like to read a little about it and this way I'm at least thinking about the material.
The topic is called Compressed Sensing (or compressive sensing) and it is a fairly new thing(<10 years). You can just google it and find out lots of information of course, but who doesn't want to read what I have to say? Right?!
I'll talk a bit about the application and why you might care about this. Say you have to get a MRI scan or something of that sort. Well what they do(more or less) is fire some waves as you and detect what bounces back and what passes through. Then using that information about what they sent and what they received a picture will be constructed. The hope is that this picture resembles what you look like inside in some sense and the Doctors can get some useful information. Now a lot of times these scans can take a long time because a lot of measurements are required in order to get even a decent picture. So wouldn't it be nice if we could take fewer measurements and/or get a better picture? This is going to mean less time in a crazy magnetic tube for you(the patient) and better information for the Doctors leading to better diagnosis hopefully. This is one of the things that compressed sensing can lead to.
Things will get a little more mathematical as I go on, but some basic linear algebra should be sufficient to get something and if you know a little bit more you might get a little bit more

Sparsity in the sense of a vector means for us that most of the entries are just zero. So if there are 1 million entries all but maybe 10000 and zero, say. So we would say that such a vector is 10000-sparse. It turns out that a lot of the things we want to deal with in real life are sparse. Look at x-rays for example. Mostly black... All that black is our zeroes - our sparsity. I'm going to introduce just a little notation - hopefully I don't use it much. Lets call our unknown vector x, and our measurment matrix A. We don't know x, but we do get to know Ax(Ax is what we measure bouncing off of you and through out). We want to solve find the sparsest vector we can such that when we hit it with A, we get Ax. That is, the sparsest vector y, such that Ay=Ax. Great! Now I don't really want to talk about how A is chosen. Randomnnes s is used, its not too complicated but lets not go there. Point is for a good choice of A, if we solve this problem, the y that we get will be exactly the same as the unknown x that we wanted to find. So we have - with relatively few measurements - recovered the picture of your brain, bones whatever exactly. But there is another problem... In practise solving for this y is extremely inefficent computationally. The best algorithms basically just try every possibility. So while this is nice in theory it is largely useless in practise. Fortunately there is an amazing game that we can play.
Instead of looking for the sparsest vector y, we will pose a new problem and look for the "smallest" vector y. I say "smallest" because I have to tell you what I mean by small in this setting. I want the vector that is smallest in the little L-1 norm for those of you who know what that is. For those of you who do not, don't be scared for it is simple. The little L-1 size (or norm) of a vector is just the sum of the absolute value of its components. (For example the L-1 size of (1,-2,3)=|1|+|-2|+|3|=1+2+3=6.) Ok so now we have a new problem.However, the amazing amazing thing is that these two problems are the same! Instead of finding the sparsest y such that Ay=Ax, we can find the "smallest" y such that Ay=Ax and we will get the same answer(technically this will not always happen, but it will happen almost all the time - the probability of it not happening is similar to me teleporting across the world due to quantum fluctuation - or perhaps winning a starleague.) And the beauty of this observation is that our new problem can be solved efficently by a computer!(since it is now a convex problem, we can apply convex optimization techniques blahblahblah).
These are the basic ideas and of course there are many more details that I did not discuss, nor did I mention any proofs but the fundamentals are not too complex to understand I don't think.
I should mention that I only discussed an ideal situation where you gain perfect measurments and there is no corruption due to noise or measurement error. In the real world this will never happen. However, the theory is robost is the sense that under small errors the result will be a good approximation to the original data though not exactly the same. Hopefully this mathematics will help to reduce hospital wait times and expenses and things like that

The paper that I am studying is called A Probabilistic and RIPless Theory of Compressed Sensing - by Candes and Plan in case anyone cares to check it out.
This vein of study leads to a topic called low-rank matrix recovery which is a the heart of the Netflix problem(yep, Netflix) and has applications to facial construction from a series of partial photographs and such, very cool.
Hopefully you got something from this or killed a little bit of time as I have

TL;DR: Hmm, don't really like these - but I guess they're useful. Compressed Sensing is some math that has applications in medical imaging. I'm studying it.




