• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EST 16:46
CET 22:46
KST 06:46
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
RSL Season 3 - Playoffs Preview0RSL Season 3 - RO16 Groups C & D Preview0RSL Season 3 - RO16 Groups A & B Preview2TL.net Map Contest #21: Winners12Intel X Team Liquid Seoul event: Showmatches and Meet the Pros10
Community News
Weekly Cups (Nov 24-30): MaxPax, Clem, herO win2BGE Stara Zagora 2026 announced15[BSL21] Ro.16 Group Stage (C->B->A->D)4Weekly Cups (Nov 17-23): Solar, MaxPax, Clem win3RSL Season 3: RO16 results & RO8 bracket13
StarCraft 2
General
Chinese SC2 server to reopen; live all-star event in Hangzhou Maestros of the Game: Live Finals Preview (RO4) BGE Stara Zagora 2026 announced Weekly Cups (Nov 24-30): MaxPax, Clem, herO win SC2 Proleague Discontinued; SKT, KT, SGK, CJ disband
Tourneys
Sparkling Tuna Cup - Weekly Open Tournament RSL Offline Finals Info - Dec 13 and 14! StarCraft Evolution League (SC Evo Biweekly) Sea Duckling Open (Global, Bronze-Diamond) $5,000+ WardiTV 2025 Championship
Strategy
Custom Maps
Map Editor closed ?
External Content
Mutation # 503 Fowl Play Mutation # 502 Negative Reinforcement Mutation # 501 Price of Progress Mutation # 500 Fright night
Brood War
General
The top three worst maps of all time Foreign Brood War BGH Auto Balance -> http://bghmmr.eu/ Data analysis on 70 million replays BW General Discussion
Tourneys
Small VOD Thread 2.0 [Megathread] Daily Proleagues [BSL21] RO16 Group D - Sunday 21:00 CET [BSL21] RO16 Group A - Saturday 21:00 CET
Strategy
Current Meta Game Theory for Starcraft How to stay on top of macro? PvZ map balance
Other Games
General Games
Nintendo Switch Thread Stormgate/Frost Giant Megathread Path of Exile ZeroSpace Megathread The Perfect Game
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
Mafia Game Mode Feedback/Ideas TL Mafia Community Thread
Community
General
US Politics Mega-thread Things Aren’t Peaceful in Palestine European Politico-economics QA Mega-thread Russo-Ukrainian War Thread The Big Programming Thread
Fan Clubs
White-Ra Fan Club
Media & Entertainment
Anime Discussion Thread [Manga] One Piece Movie Discussion!
Sports
2024 - 2026 Football Thread Formula 1 Discussion
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
Where to ask questions and add stream? The Automated Ban List
Blogs
I decided to write a webnov…
DjKniteX
Physical Exertion During Gam…
TrAiDoS
James Bond movies ranking - pa…
Topin
Thanks for the RSL
Hildegard
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1457 users

Math Problem: Placing Numbers - Page 2

Blogs > micronesia
Post a Reply
Prev 1 2 All
coltrane
Profile Blog Joined June 2008
Chile988 Posts
Last Edited: 2009-07-03 00:02:27
July 02 2009 23:58 GMT
#21
ok, lets begin...

You are working in the additive quotient group Z/9Z, therefore 9 is equivalent to 0, the additive neutro.

So, as said you cant use it until the last step, he completes the cicle.

Moreover, in any partial of the sumatory it cant be a multiple of 9.

Actually is a little bit more on it. When you use a slot, any of them, you are using the whole class, so when you use in example the 5 you cannot get any partial on a nine multiple plus 5.

This limits us as hell, but, is a start.

Let me work in a correct method to do this and some lections to extend this to Z/nZ, i suppose i will have to use ciclic groups and subgroups, but at the last i will be able to do it really fast with any group that has a solution and know just by looking if some n doesnt have it with proofs of it.


edit: so, that last thing should do for a simple coding, you take the sum, make a mod(9) (the rest of the integer divition) of it and if you get any number alredy picked then chose the next number....
Jävla skit
Cambium
Profile Blog Joined June 2004
United States16368 Posts
July 03 2009 00:18 GMT
#22
On July 03 2009 06:31 cichli wrote:
Placing numbers 1 to 9 on a circle according to your description has been solved by others on this thread, but if we generalize the problem to sequence of length n rather than length 9, we find the following solutions:

+ Show Spoiler +

Numbers 1-1 has one solution:
- [1]
Numbers 1-2 has one solutions:
- [1, 2]
Numbers 1-3 has no solutions.
Numbers 1-4 has two solutions:
- [1, 2, 4, 3]
- [3, 1, 4, 2]
Numbers 1-5 has no solutions.
Numbers 1-6 has four solutions:
- [1, 4, 2, 6, 5, 3]
- [2, 3, 5, 6, 1, 4]
- [4, 2, 5, 6, 1, 3]
- [5, 3, 1, 6, 4, 2]
Numbers 1-7 has no solutions.
Numbers 1-8 has 24 solutions:
- [1, 2, 5, 3, 8, 7, 4, 6]
- [1, 5, 2, 4, 8, 6, 7, 3]
- [1, 6, 2, 3, 8, 5, 7, 4]
- [1, 6, 4, 2, 8, 7, 5, 3]
- [2, 4, 5, 1, 8, 6, 3, 7]
- [2, 4, 7, 3, 8, 6, 1, 5]
- [2, 6, 1, 3, 8, 4, 7, 5]
- [2, 6, 3, 1, 8, 4, 5, 7]
- [3, 1, 4, 6, 8, 2, 7, 5]
- [3, 1, 5, 2, 8, 4, 6, 7]
- [3, 4, 5, 7, 8, 1, 6, 2]
- [3, 6, 7, 2, 8, 1, 4, 5]
- [5, 1, 2, 4, 8, 6, 3, 7]
- [5, 3, 1, 6, 8, 2, 4, 7]
- [5, 3, 4, 7, 8, 6, 1, 2]
- [5, 6, 2, 7, 8, 1, 3, 4]
- [6, 1, 3, 4, 8, 7, 5, 2]
- [6, 1, 5, 2, 8, 7, 3, 4]
- [6, 3, 1, 4, 8, 5, 7, 2]
- [6, 3, 7, 2, 8, 5, 1, 4]
- [7, 2, 4, 1, 8, 5, 3, 6]
- [7, 4, 1, 3, 8, 5, 6, 2]
- [7, 5, 1, 2, 8, 4, 6, 3]
- [7, 5, 3, 1, 8, 6, 4, 2]


I solved this by writing a simple SML program that does it by brute force: for each permutation of the numbers 1 through n, check if it's a valid sequence as defined in this thread. Thus, I ran out of memory when I tried solving it for sequence size 10 or larger.

Interesting observation:

+ Show Spoiler +

It seems that so far, only even sequence sizes yield solutions. Perhaps this holds some useful clue to the nature of these sequences?


Did you try working out your solution by hand?

I tried one:
- [1, 2, 5, 3, 8, 7, 4, 6] and it doesn't work

It fails on 8...
When you want something, all the universe conspires in helping you to achieve it.
Cambium
Profile Blog Joined June 2004
United States16368 Posts
Last Edited: 2009-07-03 00:49:19
July 03 2009 00:20 GMT
#23
Solution to the original problem (assuming you can place 9 anywhere...):
+ Show Spoiler +

Sequence of insertions (initial position does not matter, obviously)
->1->2->8->6->5->3->7->4
->1->2->8->5->6->4->7->3
->1->2->3->5->6->8->7->4
->1->2->5->8->6->7->4->3
->1->2->5->8->6->7->3->4
->1->2->5->8->7->6->4->3
->1->2->5->6->8->3->4->7
->1->2->5->6->8->7->4->3
->1->4->2->8->6->5->3->7
->1->4->2->6->8->3->5->7
->1->4->2->6->8->5->3->7
->1->4->2->6->8->5->7->3
->1->4->2->5->8->6->7->3
->1->4->8->2->6->5->3->7
->1->4->6->2->8->5->7->3
->1->4->3->8->6->2->5->7
->1->4->3->7->6->8->2->5
->1->4->3->7->6->8->5->2
->1->4->3->7->5->2->8->6
->1->4->3->5->2->6->8->7
->1->4->7->8->6->5->2->3
->1->4->7->8->6->5->3->2
->1->4->7->8->5->6->2->3
->1->4->7->3->2->8->6->5
->1->4->7->3->5->6->8->2
->1->4->7->5->8->6->2->3
->1->6->4->2->8->5->7->3
->1->6->8->2->5->7->3->4
->1->6->7->3->4->8->2->5
->1->6->5->2->8->4->3->7
->1->6->5->2->8->4->7->3
->1->6->5->2->8->7->4->3
->1->6->5->8->2->4->7->3
->1->3->2->6->8->5->7->4
->1->3->2->6->5->8->4->7
->1->3->2->6->5->8->7->4
->1->3->2->5->6->8->7->4
->1->3->4->8->5->2->6->7
->1->3->4->6->2->8->5->7
->1->3->4->6->2->5->8->7
->1->3->4->6->7->8->5->2
->1->3->4->7->8->2->5->6
->1->3->4->7->8->6->5->2
->1->3->4->7->6->8->5->2
->1->3->8->5->6->2->4->7
->1->3->7->4->2->8->5->6
->1->3->7->4->8->2->5->6
->1->3->7->4->6->5->8->2
->1->3->7->6->8->5->2->4
->1->3->7->5->8->2->4->6
->1->3->7->5->8->2->6->4
->1->3->7->5->8->6->2->4
->1->7->4->2->6->5->8->3
->1->7->4->8->3->2->6->5
->1->7->4->8->5->6->2->3
->1->7->4->3->8->2->6->5
->1->7->4->3->8->6->2->5
->1->7->4->3->8->6->5->2
->1->7->8->6->2->5->3->4
->1->7->8->5->2->6->4->3
->1->7->6->2->5->8->4->3
->1->7->3->4->8->2->6->5
->1->7->3->4->8->2->5->6
->1->7->3->4->6->2->8->5
->1->7->3->5->8->6->2->4
->1->7->3->5->6->2->8->4
->1->7->3->5->6->8->2->4
->1->7->5->2->6->8->3->4
->1->7->5->8->2->6->4->3
->1->7->5->3->8->6->2->4
->1->5->2->8->4->3->7->6
->1->5->2->8->6->7->3->4
->1->5->2->6->8->3->4->7
->1->5->8->2->6->4->3->7
->1->5->6->2->8->4->3->7
->1->5->6->2->8->3->4->7
->1->5->6->2->3->8->4->7
->1->5->6->8->2->3->7->4
->2->4->6->1->3->7->5->8
->2->4->1->3->7->6->8->5
->2->4->1->3->7->5->8->6
->2->4->1->7->3->5->8->6
->2->4->1->7->3->5->6->8
->2->4->1->7->5->3->8->6
->2->4->7->1->3->8->5->6
->2->4->7->3->1->6->5->8
->2->8->4->1->7->3->5->6
->2->8->4->3->7->6->1->5
->2->8->4->3->7->1->6->5
->2->8->4->3->7->1->5->6
->2->8->4->7->3->1->6->5
->2->8->6->1->4->3->7->5
->2->8->6->7->3->4->1->5
->2->8->6->5->1->4->7->3
->2->8->6->5->3->7->4->1
->2->8->6->5->3->7->1->4
->2->8->3->4->7->1->5->6
->2->8->7->4->3->1->6->5
->2->8->5->6->4->7->3->1
->2->8->5->6->1->3->7->4
->2->8->5->1->7->3->4->6
->2->8->5->7->1->3->4->6
->2->8->5->7->3->1->4->6
->2->8->5->7->3->1->6->4
->2->6->4->1->3->7->5->8
->2->6->4->3->1->7->8->5
->2->6->4->3->1->7->5->8
->2->6->4->3->7->1->5->8
->2->6->8->3->4->1->7->5
->2->6->8->3->4->7->1->5
->2->6->8->3->5->7->1->4
->2->6->8->7->1->4->3->5
->2->6->8->5->3->7->1->4
->2->6->8->5->7->4->1->3
->2->6->8->5->7->3->1->4
->2->6->7->1->3->4->8->5
->2->6->5->8->4->7->1->3
->2->6->5->8->3->1->7->4
->2->6->5->8->7->4->1->3
->2->6->5->1->7->4->8->3
->2->6->5->1->7->4->3->8
->2->6->5->1->7->3->4->8
->2->6->5->3->7->1->4->8
->2->1->4->3->7->6->8->5
->2->1->4->7->8->6->5->3
->2->1->4->7->3->5->6->8
->2->1->3->4->6->7->8->5
->2->1->3->4->7->8->6->5
->2->1->3->4->7->6->8->5
->2->1->3->7->4->6->5->8
->2->1->7->4->3->8->6->5
->2->3->8->4->7->1->5->6
->2->3->1->4->7->8->6->5
->2->3->1->4->7->8->5->6
->2->3->1->4->7->5->8->6
->2->3->1->7->4->8->5->6
->2->3->7->4->1->5->6->8
->2->3->5->6->8->7->4->1
->2->5->8->4->3->1->7->6
->2->5->8->6->7->4->3->1
->2->5->8->6->7->3->4->1
->2->5->8->6->7->3->1->4
->2->5->8->7->6->4->3->1
->2->5->8->7->1->3->4->6
->2->5->6->8->3->4->7->1
->2->5->6->8->7->4->1->3
->2->5->6->8->7->4->3->1
->2->5->6->1->3->4->7->8
->2->5->6->1->3->7->4->8
->2->5->6->1->7->3->4->8
->2->5->1->4->3->7->6->8
->2->5->1->6->7->3->4->8
->2->5->1->7->4->3->8->6
->2->5->3->4->1->7->8->6
->2->5->7->1->4->3->8->6
->2->5->7->3->4->1->6->8
->3->2->8->6->5->1->4->7
->3->2->6->8->5->7->4->1
->3->2->6->5->8->4->7->1
->3->2->6->5->8->7->4->1
->3->2->6->5->1->7->4->8
->3->2->1->4->7->8->6->5
->3->2->5->6->8->7->4->1
->3->4->8->2->6->5->1->7
->3->4->8->2->5->6->1->7
->3->4->8->2->5->1->6->7
->3->4->8->5->2->6->7->1
->3->4->6->2->8->5->1->7
->3->4->6->2->8->5->7->1
->3->4->6->2->5->8->7->1
->3->4->6->7->8->5->2->1
->3->4->1->2->5->8->6->7
->3->4->1->6->8->2->5->7
->3->4->1->7->8->6->2->5
->3->4->1->7->5->2->6->8
->3->4->1->5->2->8->6->7
->3->4->7->8->2->5->6->1
->3->4->7->8->6->5->2->1
->3->4->7->6->8->5->2->1
->3->4->7->1->2->5->6->8
->3->4->7->1->5->2->6->8
->3->4->7->1->5->6->2->8
->3->8->2->6->5->1->7->4
->3->8->4->7->1->5->6->2
->3->8->6->2->4->1->7->5
->3->8->6->2->5->1->7->4
->3->8->6->2->5->7->1->4
->3->8->6->5->2->1->7->4
->3->8->5->6->2->4->7->1
->3->1->2->8->5->6->4->7
->3->1->2->5->8->6->7->4
->3->1->2->5->8->7->6->4
->3->1->2->5->6->8->7->4
->3->1->4->2->6->8->5->7
->3->1->4->2->5->8->6->7
->3->1->4->6->2->8->5->7
->3->1->4->7->8->6->5->2
->3->1->4->7->8->5->6->2
->3->1->4->7->5->8->6->2
->3->1->6->4->2->8->5->7
->3->1->6->5->2->8->4->7
->3->1->6->5->2->8->7->4
->3->1->6->5->8->2->4->7
->3->1->7->4->2->6->5->8
->3->1->7->4->8->5->6->2
->3->1->7->8->5->2->6->4
->3->1->7->6->2->5->8->4
->3->1->7->5->8->2->6->4
->3->7->4->2->8->5->6->1
->3->7->4->8->2->5->6->1
->3->7->4->6->5->8->2->1
->3->7->4->1->2->8->6->5
->3->7->4->1->5->6->8->2
->3->7->6->8->2->5->1->4
->3->7->6->8->5->2->4->1
->3->7->6->8->5->2->1->4
->3->7->6->1->5->2->8->4
->3->7->1->4->2->8->6->5
->3->7->1->4->2->6->8->5
->3->7->1->4->8->2->6->5
->3->7->1->6->5->2->8->4
->3->7->1->5->8->2->6->4
->3->7->1->5->6->2->8->4
->3->7->5->2->8->6->1->4
->3->7->5->8->2->4->6->1
->3->7->5->8->2->6->4->1
->3->7->5->8->6->2->4->1
->3->5->2->6->8->7->1->4
->3->5->8->6->2->4->1->7
->3->5->6->2->8->4->1->7
->3->5->6->8->2->4->1->7
->3->5->6->8->2->1->4->7
->3->5->6->8->7->4->1->2
->3->5->7->1->4->2->6->8
->4->2->8->6->5->3->7->1
->4->2->8->5->6->1->3->7
->4->2->8->5->7->3->1->6
->4->2->6->8->3->5->7->1
->4->2->6->8->5->3->7->1
->4->2->6->8->5->7->3->1
->4->2->6->5->8->3->1->7
->4->2->5->8->6->7->3->1
->4->8->2->6->5->1->7->3
->4->8->2->6->5->3->7->1
->4->8->2->5->6->1->3->7
->4->8->2->5->6->1->7->3
->4->8->2->5->1->6->7->3
->4->8->3->2->6->5->1->7
->4->8->5->2->6->7->1->3
->4->8->5->6->2->3->1->7
->4->6->2->8->5->1->7->3
->4->6->2->8->5->7->1->3
->4->6->2->8->5->7->3->1
->4->6->2->5->8->7->1->3
->4->6->1->3->7->5->8->2
->4->6->7->8->5->2->1->3
->4->6->5->8->2->1->3->7
->4->1->2->8->6->5->3->7
->4->1->2->3->5->6->8->7
->4->1->2->5->8->6->7->3
->4->1->6->8->2->5->7->3
->4->1->3->2->6->8->5->7
->4->1->3->2->6->5->8->7
->4->1->3->2->5->6->8->7
->4->1->3->7->6->8->5->2
->4->1->3->7->5->8->2->6
->4->1->3->7->5->8->6->2
->4->1->7->8->6->2->5->3
->4->1->7->3->5->8->6->2
->4->1->7->3->5->6->2->8
->4->1->7->3->5->6->8->2
->4->1->7->5->2->6->8->3
->4->1->7->5->3->8->6->2
->4->1->5->2->8->6->7->3
->4->1->5->6->8->2->3->7
->4->3->8->2->6->5->1->7
->4->3->8->6->2->5->1->7
->4->3->8->6->2->5->7->1
->4->3->8->6->5->2->1->7
->4->3->1->2->5->8->6->7
->4->3->1->2->5->8->7->6
->4->3->1->2->5->6->8->7
->4->3->1->6->5->2->8->7
->4->3->1->7->8->5->2->6
->4->3->1->7->6->2->5->8
->4->3->1->7->5->8->2->6
->4->3->7->6->8->2->5->1
->4->3->7->6->8->5->2->1
->4->3->7->6->1->5->2->8
->4->3->7->1->6->5->2->8
->4->3->7->1->5->8->2->6
->4->3->7->1->5->6->2->8
->4->3->7->5->2->8->6->1
->4->3->5->2->6->8->7->1
->4->7->8->2->5->6->1->3
->4->7->8->6->5->2->1->3
->4->7->8->6->5->2->3->1
->4->7->8->6->5->3->2->1
->4->7->8->5->6->2->3->1
->4->7->6->8->5->2->1->3
->4->7->1->2->5->6->8->3
->4->7->1->3->2->6->5->8
->4->7->1->3->8->5->6->2
->4->7->1->5->2->6->8->3
->4->7->1->5->6->2->8->3
->4->7->1->5->6->2->3->8
->4->7->3->2->8->6->5->1
->4->7->3->1->2->8->5->6
->4->7->3->1->6->5->2->8
->4->7->3->1->6->5->8->2
->4->7->3->5->6->8->2->1
->4->7->5->8->6->2->3->1
->5->2->4->1->3->7->6->8
->5->2->8->4->3->7->6->1
->5->2->8->4->3->7->1->6
->5->2->8->4->7->3->1->6
->5->2->8->6->1->4->3->7
->5->2->8->6->7->3->4->1
->5->2->8->7->4->3->1->6
->5->2->6->4->3->1->7->8
->5->2->6->8->3->4->1->7
->5->2->6->8->3->4->7->1
->5->2->6->8->7->1->4->3
->5->2->6->7->1->3->4->8
->5->2->1->4->3->7->6->8
->5->2->1->3->4->6->7->8
->5->2->1->3->4->7->8->6
->5->2->1->3->4->7->6->8
->5->2->1->7->4->3->8->6
->5->2->3->1->4->7->8->6
->5->8->2->4->6->1->3->7
->5->8->2->4->7->3->1->6
->5->8->2->6->4->1->3->7
->5->8->2->6->4->3->1->7
->5->8->2->6->4->3->7->1
->5->8->2->1->3->7->4->6
->5->8->4->3->1->7->6->2
->5->8->4->7->1->3->2->6
->5->8->6->2->4->1->3->7
->5->8->6->2->4->1->7->3
->5->8->6->2->3->1->4->7
->5->8->6->7->4->3->1->2
->5->8->6->7->3->4->1->2
->5->8->6->7->3->1->4->2
->5->8->3->1->7->4->2->6
->5->8->7->4->1->3->2->6
->5->8->7->6->4->3->1->2
->5->8->7->1->3->4->6->2
->5->6->2->4->7->1->3->8
->5->6->2->8->4->1->7->3
->5->6->2->8->4->3->7->1
->5->6->2->8->3->4->7->1
->5->6->2->3->8->4->7->1
->5->6->2->3->1->4->7->8
->5->6->2->3->1->7->4->8
->5->6->4->7->3->1->2->8
->5->6->8->2->4->1->7->3
->5->6->8->2->1->4->7->3
->5->6->8->2->3->7->4->1
->5->6->8->3->4->7->1->2
->5->6->8->7->4->1->2->3
->5->6->8->7->4->1->3->2
->5->6->8->7->4->3->1->2
->5->6->1->3->4->7->8->2
->5->6->1->3->7->4->2->8
->5->6->1->3->7->4->8->2
->5->6->1->7->3->4->8->2
->5->1->4->3->7->6->8->2
->5->1->4->7->3->2->8->6
->5->1->6->7->3->4->8->2
->5->1->7->4->8->3->2->6
->5->1->7->4->3->8->2->6
->5->1->7->4->3->8->6->2
->5->1->7->3->4->8->2->6
->5->1->7->3->4->6->2->8
->5->3->2->1->4->7->8->6
->5->3->4->1->7->8->6->2
->5->3->8->6->2->4->1->7
->5->3->7->4->1->2->8->6
->5->3->7->1->4->2->8->6
->5->3->7->1->4->2->6->8
->5->3->7->1->4->8->2->6
->5->7->4->1->3->2->6->8
->5->7->1->4->2->6->8->3
->5->7->1->4->3->8->6->2
->5->7->1->3->4->6->2->8
->5->7->3->4->1->6->8->2
->5->7->3->1->4->2->6->8
->5->7->3->1->4->6->2->8
->5->7->3->1->6->4->2->8
->6->2->4->1->3->7->5->8
->6->2->4->1->7->3->5->8
->6->2->4->1->7->5->3->8
->6->2->4->7->1->3->8->5
->6->2->8->4->1->7->3->5
->6->2->8->4->3->7->1->5
->6->2->8->3->4->7->1->5
->6->2->8->5->1->7->3->4
->6->2->8->5->7->1->3->4
->6->2->8->5->7->3->1->4
->6->2->3->8->4->7->1->5
->6->2->3->1->4->7->8->5
->6->2->3->1->4->7->5->8
->6->2->3->1->7->4->8->5
->6->2->5->8->4->3->1->7
->6->2->5->8->7->1->3->4
->6->2->5->1->7->4->3->8
->6->2->5->3->4->1->7->8
->6->2->5->7->1->4->3->8
->6->4->2->8->5->7->3->1
->6->4->1->3->7->5->8->2
->6->4->3->1->2->5->8->7
->6->4->3->1->7->8->5->2
->6->4->3->1->7->5->8->2
->6->4->3->7->1->5->8->2
->6->4->7->3->1->2->8->5
->6->8->2->4->1->7->3->5
->6->8->2->1->4->7->3->5
->6->8->2->3->7->4->1->5
->6->8->2->5->1->4->3->7
->6->8->2->5->7->3->4->1
->6->8->3->4->1->7->5->2
->6->8->3->4->7->1->2->5
->6->8->3->4->7->1->5->2
->6->8->3->5->7->1->4->2
->6->8->7->4->1->2->3->5
->6->8->7->4->1->3->2->5
->6->8->7->4->3->1->2->5
->6->8->7->1->4->3->5->2
->6->8->5->2->4->1->3->7
->6->8->5->2->1->4->3->7
->6->8->5->2->1->3->4->7
->6->8->5->3->7->1->4->2
->6->8->5->7->4->1->3->2
->6->8->5->7->3->1->4->2
->6->1->4->3->7->5->2->8
->6->1->3->4->7->8->2->5
->6->1->3->7->4->2->8->5
->6->1->3->7->4->8->2->5
->6->1->3->7->5->8->2->4
->6->1->7->3->4->8->2->5
->6->1->5->2->8->4->3->7
->6->7->4->3->1->2->5->8
->6->7->8->5->2->1->3->4
->6->7->1->3->4->8->5->2
->6->7->3->4->8->2->5->1
->6->7->3->4->1->2->5->8
->6->7->3->4->1->5->2->8
->6->7->3->1->4->2->5->8
->6->5->2->8->4->3->7->1
->6->5->2->8->4->7->3->1
->6->5->2->8->7->4->3->1
->6->5->2->1->3->4->7->8
->6->5->2->1->7->4->3->8
->6->5->2->3->1->4->7->8
->6->5->8->2->4->7->3->1
->6->5->8->2->1->3->7->4
->6->5->8->4->7->1->3->2
->6->5->8->3->1->7->4->2
->6->5->8->7->4->1->3->2
->6->5->1->4->7->3->2->8
->6->5->1->7->4->8->3->2
->6->5->1->7->4->3->8->2
->6->5->1->7->3->4->8->2
->6->5->3->2->1->4->7->8
->6->5->3->7->4->1->2->8
->6->5->3->7->1->4->2->8
->6->5->3->7->1->4->8->2
->7->4->2->8->5->6->1->3
->7->4->2->6->5->8->3->1
->7->4->8->2->5->6->1->3
->7->4->8->3->2->6->5->1
->7->4->8->5->6->2->3->1
->7->4->6->5->8->2->1->3
->7->4->1->2->8->6->5->3
->7->4->1->2->3->5->6->8
->7->4->1->3->2->6->8->5
->7->4->1->3->2->6->5->8
->7->4->1->3->2->5->6->8
->7->4->1->5->6->8->2->3
->7->4->3->8->2->6->5->1
->7->4->3->8->6->2->5->1
->7->4->3->8->6->5->2->1
->7->4->3->1->2->5->8->6
->7->4->3->1->2->5->6->8
->7->4->3->1->6->5->2->8
->7->8->2->5->6->1->3->4
->7->8->6->2->5->3->4->1
->7->8->6->5->2->1->3->4
->7->8->6->5->2->3->1->4
->7->8->6->5->3->2->1->4
->7->8->5->2->6->4->3->1
->7->8->5->2->1->3->4->6
->7->8->5->6->2->3->1->4
->7->6->2->5->8->4->3->1
->7->6->4->3->1->2->5->8
->7->6->8->2->5->1->4->3
->7->6->8->5->2->4->1->3
->7->6->8->5->2->1->4->3
->7->6->8->5->2->1->3->4
->7->6->1->5->2->8->4->3
->7->1->2->5->6->8->3->4
->7->1->4->2->8->6->5->3
->7->1->4->2->6->8->3->5
->7->1->4->2->6->8->5->3
->7->1->4->8->2->6->5->3
->7->1->4->3->8->6->2->5
->7->1->4->3->5->2->6->8
->7->1->6->5->2->8->4->3
->7->1->3->2->6->5->8->4
->7->1->3->4->8->5->2->6
->7->1->3->4->6->2->8->5
->7->1->3->4->6->2->5->8
->7->1->3->8->5->6->2->4
->7->1->5->2->6->8->3->4
->7->1->5->8->2->6->4->3
->7->1->5->6->2->8->4->3
->7->1->5->6->2->8->3->4
->7->1->5->6->2->3->8->4
->7->3->2->8->6->5->1->4
->7->3->4->8->2->6->5->1
->7->3->4->8->2->5->6->1
->7->3->4->8->2->5->1->6
->7->3->4->6->2->8->5->1
->7->3->4->1->2->5->8->6
->7->3->4->1->6->8->2->5
->7->3->4->1->5->2->8->6
->7->3->1->2->8->5->6->4
->7->3->1->4->2->6->8->5
->7->3->1->4->2->5->8->6
->7->3->1->4->6->2->8->5
->7->3->1->6->4->2->8->5
->7->3->1->6->5->2->8->4
->7->3->1->6->5->8->2->4
->7->3->5->8->6->2->4->1
->7->3->5->6->2->8->4->1
->7->3->5->6->8->2->4->1
->7->3->5->6->8->2->1->4
->7->5->2->8->6->1->4->3
->7->5->2->6->8->3->4->1
->7->5->8->2->4->6->1->3
->7->5->8->2->6->4->1->3
->7->5->8->2->6->4->3->1
->7->5->8->6->2->4->1->3
->7->5->8->6->2->3->1->4
->7->5->3->8->6->2->4->1
->8->2->4->6->1->3->7->5
->8->2->4->1->7->3->5->6
->8->2->4->7->3->1->6->5
->8->2->6->4->1->3->7->5
->8->2->6->4->3->1->7->5
->8->2->6->4->3->7->1->5
->8->2->6->5->1->7->4->3
->8->2->6->5->1->7->3->4
->8->2->6->5->3->7->1->4
->8->2->1->4->7->3->5->6
->8->2->1->3->7->4->6->5
->8->2->3->7->4->1->5->6
->8->2->5->6->1->3->4->7
->8->2->5->6->1->3->7->4
->8->2->5->6->1->7->3->4
->8->2->5->1->4->3->7->6
->8->2->5->1->6->7->3->4
->8->2->5->7->3->4->1->6
->8->4->1->7->3->5->6->2
->8->4->3->1->7->6->2->5
->8->4->3->7->6->1->5->2
->8->4->3->7->1->6->5->2
->8->4->3->7->1->5->6->2
->8->4->7->1->3->2->6->5
->8->4->7->1->5->6->2->3
->8->4->7->3->1->6->5->2
->8->6->2->4->1->3->7->5
->8->6->2->4->1->7->3->5
->8->6->2->4->1->7->5->3
->8->6->2->3->1->4->7->5
->8->6->2->5->1->7->4->3
->8->6->2->5->3->4->1->7
->8->6->2->5->7->1->4->3
->8->6->1->4->3->7->5->2
->8->6->7->4->3->1->2->5
->8->6->7->3->4->1->2->5
->8->6->7->3->4->1->5->2
->8->6->7->3->1->4->2->5
->8->6->5->2->1->3->4->7
->8->6->5->2->1->7->4->3
->8->6->5->2->3->1->4->7
->8->6->5->1->4->7->3->2
->8->6->5->3->2->1->4->7
->8->6->5->3->7->4->1->2
->8->6->5->3->7->1->4->2
->8->3->2->6->5->1->7->4
->8->3->4->1->7->5->2->6
->8->3->4->7->1->2->5->6
->8->3->4->7->1->5->2->6
->8->3->4->7->1->5->6->2
->8->3->1->7->4->2->6->5
->8->3->5->7->1->4->2->6
->8->7->4->1->2->3->5->6
->8->7->4->1->3->2->6->5
->8->7->4->1->3->2->5->6
->8->7->4->3->1->2->5->6
->8->7->4->3->1->6->5->2
->8->7->6->4->3->1->2->5
->8->7->1->4->3->5->2->6
->8->7->1->3->4->6->2->5
->8->5->2->4->1->3->7->6
->8->5->2->6->4->3->1->7
->8->5->2->6->7->1->3->4
->8->5->2->1->4->3->7->6
->8->5->2->1->3->4->6->7
->8->5->2->1->3->4->7->6
->8->5->6->2->4->7->1->3
->8->5->6->2->3->1->4->7
->8->5->6->2->3->1->7->4
->8->5->6->4->7->3->1->2
->8->5->6->1->3->7->4->2
->8->5->1->7->3->4->6->2
->8->5->3->7->1->4->2->6
->8->5->7->4->1->3->2->6
->8->5->7->1->3->4->6->2
->8->5->7->3->1->4->2->6
->8->5->7->3->1->4->6->2
->8->5->7->3->1->6->4->2
Source (brute force java):
http://pastebin.com/m21e7a247


When you want something, all the universe conspires in helping you to achieve it.
cichli
Profile Joined August 2006
Sweden84 Posts
July 03 2009 00:31 GMT
#24
On July 03 2009 09:18 Cambium wrote:
Did you try working out your solution by hand?

I tried one:
- [1, 2, 5, 3, 8, 7, 4, 6] and it doesn't work

It fails on 8...


No, it does not fail. This is a solution for a different version of the problem originally posed: what you're looking at is a solution for placing the numbers 1-8 in 8 boxes, rather than the numbers 1-9 in 9 boxes. Thus, 8 is the last number in the sequence and should reach itself. 8 is also reachable from 7.
The Internet will not listen to reason
Cambium
Profile Blog Joined June 2004
United States16368 Posts
July 03 2009 00:37 GMT
#25
On July 03 2009 09:31 cichli wrote:
Show nested quote +
On July 03 2009 09:18 Cambium wrote:
Did you try working out your solution by hand?

I tried one:
- [1, 2, 5, 3, 8, 7, 4, 6] and it doesn't work

It fails on 8...


No, it does not fail. This is a solution for a different version of the problem originally posed: what you're looking at is a solution for placing the numbers 1-8 in 8 boxes, rather than the numbers 1-9 in 9 boxes. Thus, 8 is the last number in the sequence and should reach itself. 8 is also reachable from 7.


Ohhh, your answer details position and number. I thought it was the sequence of numbers to be inserted. My apologies.
When you want something, all the universe conspires in helping you to achieve it.
coltrane
Profile Blog Joined June 2008
Chile988 Posts
July 03 2009 00:47 GMT
#26
ahah, didnt read dromar second spoiler before, he is right...

46 is the totall sum, if we asume 9 is our last number we have a partial sum of 37, that is 1+36, so is the class of 1, is already taken by our first number.
Jävla skit
cichli
Profile Joined August 2006
Sweden84 Posts
July 03 2009 00:52 GMT
#27
Wrote an improved SML solution that uses backtracking instead of testing all permutations. The code is still pretty ugly and completely undocumented, but performance increased somewhat and I could test it with slighly larger problem sizes. We now have the following results:

(number of boxes to fill, number of possible solutions)
________________________________
(0,0)
(1,1)
(2,1)
(3,0)
(4,2)
(5,0)
(6,4)
(7,0)
(8,24)
(9,0)
(10,288)
(11,0)
(12,3856)
(13,0)
(14,89328)

The trend continues: for sequences with length >1, only sequences of even length yield any solutions at all. It sounds like a reasonable hypothesis, but does it hold in general? How many of our first-born must we sacrifice to the number theory gods in order to prove it?

Also, for even-length sequences, the number of possible solutions seems to increase exponentially. This is hardly surprising.

When I feel like it, I'll try to state this as a constraint satisfaction problem in GeCode/J and see if I get better performance that way.

On July 03 2009 09:37 Cambium wrote:
Ohhh, your answer details position and number. I thought it was the sequence of numbers to be inserted. My apologies.


No problem: I should have bothered to explain my notation better
The Internet will not listen to reason
coltrane
Profile Blog Joined June 2008
Chile988 Posts
July 03 2009 00:58 GMT
#28
u dont need number theory... u probe it with group theory in 2 steps, im sure, but i am looking at my old university books to write it well.
Jävla skit
moriya
Profile Joined March 2009
United States54 Posts
Last Edited: 2009-07-03 01:49:46
July 03 2009 01:47 GMT
#29
it is no surprise that only even numbers have solution. The sum of 1 to n-1 can be divided by n if n is odd, which means that the last number n have to be put on the same position of 1.
If n is even, the solution is actually a sequence Ai where A1,A2,...A(n-1) is picked from 1 to n-1 and satisfy that A1,A1+A2,...A1+....A(n-1)|| mod n are all different (1 to n-1).
ReMiiX
Profile Blog Joined April 2009
United States338 Posts
July 03 2009 04:38 GMT
#30
I am working on coding the solution now, it should take quite a while to write then run so I will post my results later today.
GaTech CSL fighting!
Joseph A. T.
Profile Joined July 2009
Lebanon6 Posts
July 03 2009 06:50 GMT
#31
Thanks a lot, because you are interested in the problem micronesia have posted for me ...
I'm sorry because the first problem (with numbers from 1 to 9) was impossible to solve, but i understand why it won't work with odd numbers, I think moriya is completely true.
And, if someone knows C++, could he send me the source code of the program to solve this problem , plz ...

(Sorry for my poor english)
cichli
Profile Joined August 2006
Sweden84 Posts
Last Edited: 2009-07-03 09:14:49
July 03 2009 09:06 GMT
#32
On July 03 2009 10:47 moriya wrote:
it is no surprise that only even numbers have solution. The sum of 1 to n-1 can be divided by n if n is odd, which means that the last number n have to be put on the same position of 1.
If n is even, the solution is actually a sequence Ai where A1,A2,...A(n-1) is picked from 1 to n-1 and satisfy that A1,A1+A2,...A1+....A(n-1)|| mod n are all different (1 to n-1).


Good observations! It's easy to prove that odd numbers >1 don't have solutions: the sum of the numbers 1 to n-1 is the n-1:th trianglular number. can be written on the form T(n) = n*(n-1)/2. If n is odd and n>1, n is a divisor of T(n): (n-1)=2*m for some integer m and thus T(n) = n*2*m/2 = n*m which is divisible by n. This means that n will land on the same spot as 1 no matter which order we place the others in.

So far so good: we have proven that odd numbers >1 don't have solutions. But can we prove that all even-length sequences have solutions?
The Internet will not listen to reason
igotmyown
Profile Blog Joined April 2009
United States4291 Posts
July 03 2009 12:21 GMT
#33
Let p be prime. There exists a generator (I forget the language) a, such that, |{a^i mod p: i in {1..p-1} }| = p-1; that is each a^i is unique mod p. a^(i+1)-a^i=(a-1)*a^i, and since a-1 is relatively prime to p, and a^i generates 1..p-1, we have a solution. That is, start at 1, fill in a-1. Move a-1 mod p, you're at box a mod p. Fill in (a-1)*a^i, you will end up in box a^i. There will be no repeats, since a is a generator.

I'm ignoring the pth (or 0 mod p term). You should be able to fill in the boxes relatively prime to n. As for the rest of the boxes, hopefully people can figure out something clever.
Prev 1 2 All
Please log in or register to reply.
Live Events Refresh
BSL 21
20:00
RO16: Group D
Bonyth vs StRyKeR
Tarson vs Dandy
ZZZero.O297
LiquipediaDiscussion
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
Liquid`TLO 209
JuggernautJason169
ProTech140
CosmosSc2 91
StarCraft: Brood War
Shuttle 545
ZZZero.O 297
Dewaltoss 86
Hyun 63
Dota 2
Dendi1121
syndereN102
Counter-Strike
fl0m6722
byalli652
Heroes of the Storm
Khaldor209
Other Games
Grubby6452
B2W.Neo759
shahzam170
ArmadaUGS139
Mew2King100
XaKoH 88
Organizations
Other Games
EGCTV2762
gamesdonequick1435
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 15 non-featured ]
StarCraft 2
• Reevou 9
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• WagamamaTV594
• Ler99
Other Games
• imaqtpie1994
• Shiphtur267
Upcoming Events
Replay Cast
11h 14m
Wardi Open
14h 14m
StarCraft2.fi
18h 14m
Monday Night Weeklies
19h 14m
Replay Cast
1d 2h
WardiTV 2025
1d 14h
StarCraft2.fi
1d 18h
PiGosaur Monday
2 days
StarCraft2.fi
2 days
Tenacious Turtle Tussle
3 days
[ Show More ]
The PondCast
3 days
WardiTV 2025
3 days
StarCraft2.fi
3 days
WardiTV 2025
4 days
StarCraft2.fi
5 days
RSL Revival
5 days
IPSL
5 days
Sziky vs JDConan
RSL Revival
6 days
Classic vs TBD
herO vs Zoun
WardiTV 2025
6 days
IPSL
6 days
Tarson vs DragOn
Liquipedia Results

Completed

Proleague 2025-12-04
RSL Revival: Season 3
Light HT

Ongoing

C-Race Season 1
IPSL Winter 2025-26
KCM Race Survival 2025 Season 4
YSL S2
BSL Season 21
Slon Tour Season 2
Acropolis #4 - TS3
WardiTV 2025
META Madness #9
Kuram Kup
SL Budapest Major 2025
ESL Impact League Season 8
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025
Thunderpick World Champ.
CS Asia Championships 2025
ESL Pro League S22

Upcoming

BSL 21 Non-Korean Championship
Acropolis #4
IPSL Spring 2026
Bellum Gens Elite Stara Zagora 2026
HSC XXVIII
Big Gabe Cup #3
RSL Offline Finals
PGL Cluj-Napoca 2026
IEM Kraków 2026
BLAST Bounty Winter 2026
BLAST Bounty Winter Qual
eXTREMESLAND 2025
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.