• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 08:29
CEST 14:29
KST 21:29
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
Serral wins EWC 202542Tournament Spotlight: FEL Cracow 202510Power Rank - Esports World Cup 202580RSL Season 1 - Final Week9[ASL19] Finals Recap: Standing Tall15
Community News
Weekly Cups (Jul 28-Aug 3): herO doubles up5LiuLi Cup - August 2025 Tournaments3[BSL 2025] H2 - Team Wars, Weeklies & SB Ladder10EWC 2025 - Replay Pack4Google Play ASL (Season 20) Announced58
StarCraft 2
General
Clem Interview: "PvT is a bit insane right now" Serral wins EWC 2025 TL Team Map Contest #5: Presented by Monster Energy Would you prefer the game to be balanced around top-tier pro level or average pro level? Weekly Cups (Jul 28-Aug 3): herO doubles up
Tourneys
WardiTV Mondays $5,000 WardiTV Summer Championship 2025 Sparkling Tuna Cup - Weekly Open Tournament LiuLi Cup - August 2025 Tournaments Sea Duckling Open (Global, Bronze-Diamond)
Strategy
Custom Maps
External Content
Mutation # 485 Death from Below Mutation # 484 Magnetic Pull Mutation #239 Bad Weather Mutation # 483 Kill Bot Wars
Brood War
General
Which top zerg/toss will fail in qualifiers? BW General Discussion Google Play ASL (Season 20) Announced How do the new Battle.net ranks translate? Nobody gona talk about this year crazy qualifiers?
Tourneys
[ASL20] Online Qualifiers Day 2 [Megathread] Daily Proleagues Cosmonarchy Pro Showmatches [ASL20] Online Qualifiers Day 1
Strategy
Simple Questions, Simple Answers [G] Mineral Boosting Muta micro map competition Does 1 second matter in StarCraft?
Other Games
General Games
Total Annihilation Server - TAForever Stormgate/Frost Giant Megathread Nintendo Switch Thread Beyond All Reason [MMORPG] Tree of Savior (Successor of Ragnarok)
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
US Politics Mega-thread Bitcoin discussion thread Things Aren’t Peaceful in Palestine European Politico-economics QA Mega-thread 9/11 Anniversary
Fan Clubs
INnoVation Fan Club SKT1 Classic Fan Club!
Media & Entertainment
Movie Discussion! [Manga] One Piece Anime Discussion Thread [\m/] Heavy Metal Thread Korean Music Discussion
Sports
2024 - 2025 Football Thread Formula 1 Discussion TeamLiquid Health and Fitness Initiative For 2023
World Cup 2022
Tech Support
Gtx660 graphics card replacement Installation of Windows 10 suck at "just a moment" Computer Build, Upgrade & Buying Resource Thread
TL Community
TeamLiquid Team Shirt On Sale The Automated Ban List
Blogs
[Girl blog} My fema…
artosisisthebest
Sharpening the Filtration…
frozenclaw
ASL S20 English Commentary…
namkraft
The Link Between Fitness and…
TrAiDoS
momentary artworks from des…
tankgirl
from making sc maps to makin…
Husyelt
Customize Sidebar...

Website Feedback

Closed Threads



Active: 662 users

Math Puzzle(s)

Blogs > sidr
Post a Reply
Normal
sidr
Profile Blog Joined May 2008
United States55 Posts
September 05 2011 21:19 GMT
#1
Hey all, I have two somewhat similar math puzzles for those interested:

1) Let R be a rectangle. Suppose R can be divided into rectangles (non-overlapping except on edges) such that each rectangle has at least one rational side length. Show R has at least one rational side length.

2) Let R be a rectangle with sides a,b. Suppose R can be divided into squares (non-overlapping except on edges). Show that a/b is rational.

Pictures: + Show Spoiler +
[image loading]

Uploaded with ImageShack.us


Enjoy.

micronesia
Profile Blog Joined July 2006
United States24682 Posts
September 05 2011 21:21 GMT
#2
Gar.... I hate math puzzles that you can't work on unless you studied higher math... XD

I have no idea how to show if things are or are not rational ._.
ModeratorThere are animal crackers for people and there are people crackers for animals.
sidr
Profile Blog Joined May 2008
United States55 Posts
Last Edited: 2011-09-05 21:30:32
September 05 2011 21:29 GMT
#3
well there are "standard" approaches in some cases, but it wouldn't be much of a puzzle if first instincts existed/worked.

Here's a quick rundown of the fact that Sqrt(2) is irrational if you want to see one such technique:
+ Show Spoiler +
Suppose Sqrt(2) = a/b with a, b integers. We may assume a and b have no common prime factors (lowest terms). We have (b Sqrt(2)) = a or, after squaring both sides, 2b^2 = a^2. Hence, a^2 is even. By prime factorization, a must be even, so a = 2c for some integer c. Now we have 2 b^2 = (2c)^2 = 4c^2, so cancelling 2's we have b^2 = 2 c^2. Hence, b must also be even, contradicting that a/b was in lowest terms. Thus, Sqrt(2) must be irrational.
AcrossFiveJulys
Profile Blog Joined September 2005
United States3612 Posts
Last Edited: 2011-09-05 21:30:59
September 05 2011 21:30 GMT
#4
On September 06 2011 06:21 micronesia wrote:
Gar.... I hate math puzzles that you can't work on unless you studied higher math... XD

I have no idea how to show if things are or are not rational ._.


a number n is rational if and only if it can be expressed as n = p/q, for some integers p and q. so if you can prove that such a p and q must exist, you prove the number is rational; conversely, if you prove that such a p and q cannot exist, you prove the number is irrational.
n.DieJokes
Profile Blog Joined November 2008
United States3443 Posts
September 05 2011 21:30 GMT
#5
No idea, don't have the necessary skills to solve either of them.
Alternate problem everyone can relate to. Using dollars, half dollars, quarters, dimes, nickels and pennies whats the smallest value of k that is not convertible where being convertible means it is possible to find a collection of k coins adding up to a dollar. Ex: 1 is convertible because we just use the dollar, 2 is also convertible because 2 half dollars etc.. Have fun, I'll post the solution if theres interest
MyLove + Your Love= Supa Love
The_Templar
Profile Blog Joined January 2011
your Country52797 Posts
September 05 2011 21:39 GMT
#6
On September 06 2011 06:30 n.DieJokes wrote:
No idea, don't have the necessary skills to solve either of them.
Alternate problem everyone can relate to. Using dollars, half dollars, quarters, dimes, nickels and pennies whats the smallest value of k that is not convertible where being convertible means it is possible to find a collection of k coins adding up to a dollar. Ex: 1 is convertible because we just use the dollar, 2 is also convertible because 2 half dollars etc.. Have fun, I'll post the solution if theres interest

101?
Moderatorshe/her
TL+ Member
n.DieJokes
Profile Blog Joined November 2008
United States3443 Posts
Last Edited: 2011-09-05 21:41:05
September 05 2011 21:40 GMT
#7
On September 06 2011 06:39 TehTemplar wrote:
Show nested quote +
On September 06 2011 06:30 n.DieJokes wrote:
No idea, don't have the necessary skills to solve either of them.
Alternate problem everyone can relate to. Using dollars, half dollars, quarters, dimes, nickels and pennies whats the smallest value of k that is not convertible where being convertible means it is possible to find a collection of k coins adding up to a dollar. Ex: 1 is convertible because we just use the dollar, 2 is also convertible because 2 half dollars etc.. Have fun, I'll post the solution if theres interest

101?

You can go smaller + Show Spoiler +
for example, does 99 work?
MyLove + Your Love= Supa Love
AcrossFiveJulys
Profile Blog Joined September 2005
United States3612 Posts
Last Edited: 2011-09-05 21:42:50
September 05 2011 21:41 GMT
#8
1.
+ Show Spoiler +

Here's an outline for how I would prove this if I had time to fill in the details.

Assume a configuration of rectangles such that each has at least one rational side. Call the set of all horizontal rational sides H, and the set of all vertical rational sides V.
Show that there must be a subset of either H or V such that the length of the sides add up to a multiple of the length of R's horizontal or vertical side [this is the nontrivial part].
Since the sum of rational numbers must be rational, and a multiple of a rational number must be rational, this implies that at least one of R's sides must be rational.
AcrossFiveJulys
Profile Blog Joined September 2005
United States3612 Posts
September 05 2011 21:51 GMT
#9
On September 06 2011 06:30 n.DieJokes wrote:
No idea, don't have the necessary skills to solve either of them.
Alternate problem everyone can relate to. Using dollars, half dollars, quarters, dimes, nickels and pennies whats the smallest value of k that is not convertible where being convertible means it is possible to find a collection of k coins adding up to a dollar. Ex: 1 is convertible because we just use the dollar, 2 is also convertible because 2 half dollars etc.. Have fun, I'll post the solution if theres interest


I'd just write a program to solve this one... I can't think of a way to derive an analytical solution for k.
THE_DOMINATOR
Profile Blog Joined April 2010
United States309 Posts
September 05 2011 21:53 GMT
#10
Here's some good old fashion logic for you.

1) Let R be divided into 2 equal rectangles. that leaves you with with x/2+x/2 =x where x/2 is the rational side of an inner rectangle. The sum of rational numbers will always be rational.

2) let c=a/b =>c is rational. c=a/b =>a/b is rational just restating the definition
DOMINATION
AcrossFiveJulys
Profile Blog Joined September 2005
United States3612 Posts
September 05 2011 21:57 GMT
#11
On September 06 2011 06:53 THE_DOMINATOR wrote:
Here's some good old fashion logic for you.

1) Let R be divided into 2 equal rectangles. that leaves you with with x/2+x/2 =x where x/2 is the rational side of an inner rectangle. The sum of rational numbers will always be rational.


This is true in the case where R can be subdivided into 2 equal rectangles. But in the general case R can be subdivided into N rectangles with possibly different sizes.

I.e., you can't choose the exact configuration of inside rectangles. If you could, an even simpler solution than the one you gave would say there is exactly one rectangle inside R with the same dimensions as R, which must have at least one rational side so R has at least one rational side.
sidr
Profile Blog Joined May 2008
United States55 Posts
September 05 2011 22:15 GMT
#12
For n.DieJokes' puzzle:

+ Show Spoiler +
I claim 77 is the lowest nonconvertible denomination.

First, let's look at what only nickels and pennies get us:
suppose we have n nickels and p pennies adding to 100. Then, 5n + p = 100, so p = 100 - 5n. In this case, we have n + p = 100 - 4n coins, so using only nickels and pennies we see every number in {100, 96, 92, ..., 20} is convertible.

Now, given a number of this form, say x, let's try to show x+1, x+2, and x+3 are convertible. If we have x = 100 - 4n, we can make x+3 by changing 1 nickel for 5 pennies (+4 coins) and changing 2 nickels for 1 dime (-1 coins). To make x+2, we can change 1 nickel for 5 pennies (+4 coins) and 4 nickels for 2 dimes (-2 coins). To make x+1, we can change 1 nickel for 5 pennies (+4 coins) and 6 nickels for 3 dimes (-2 coins). For this all to work, we need n to be at least 7. This always works for such n though, so {20, 21, ..., 100-4(7)} contains only convertible numbers. 100-4(7) = 72. The above process gives us 74 and 75, so we need to create 73, which is 3 dimes + 70 pennies. Hence, assuming 1,...,19 are all convertible, then the smallest possibly nonconvertible number is 77.

We wish to find 77 coins which total 100. Using nickels and pennies only this is impossible as shown above, and if we use a quarter we will not be able to use all 77 coins as 100-25=75 which is less than 77-1=76. Suppose we have 1 dime. Then, we want to make 90 out of 76 nickels and pennies, so we wish to solve 5n+p=90 and n+p=76 simultaneously. This gives p = 90-5n so n+p=90-4n=76, so 4n=14 which is impossible. Now, if we have 2 dimes, we wish to make 80 out of 75 nickels and pennies. Our equations are n+p=75 and 5n+p=80, so p=80-5n and hence n+(80-5n)=80-4n=75, so 4n=5 which is impossible. With 3 dimes, we need to make 70 out of more than 70 coins, which is impossible, so 77 is not convertible.

Finally, we need to demonstrate 1,...,19 are all convertible. We have:
1. 100
2. 2(50)
3. 50 + 2(25)
4. 4(25)
5. 50 + 25 + 2(10) + 5
6. 50 + 25 + 10 + 3(5)
7. 50 + 25 + 5(5)
8. 50 + 3(10) + 4(5)
9. 50 + 2(10) + 6(5)
10. 50 + 10 + 8(5)
11. 50 + 10(5)
12. 50 + 3(10) + 3(5) + 5(1)
13. 50 + 2(10) + 5(5) + 5(1)
14. 50 + 10 + 7(5) + 5(1)
15. 50 + 9(5) + 5(1)
16. 50 + 3(10) + 2(5) + 10(1)
17. 50 + 2(10) + 4(5) + 10(1)
18. 50 + 10 + 6(5) + 10(1)
19. 50 + 8(5) + 10(1)
blankspace
Profile Blog Joined June 2010
United States292 Posts
September 05 2011 22:18 GMT
#13
1) Nice problem, kinda tricky

Let's place the rectangle in the coordinate plane and assume the bottom left corner is (0,0).

Call a vertex A if it has rational coordinates, B otherwise.

Fact: A rectangle can't have an odd number of A vertexes (you may verify this yourself).

Now let's count how many A vertexes and B vertexes R has. We do this by summing over all inner rectangles and removing the shared points. Note that only the corner vertexes are not shared by some rectangle, and each vertex is shared by either two or four rectangles.

Each rectangle r_i contributes a_i and b_i where a_i and b_i are even. Hence the number of corner vertexes is: sum(a_i) - (even #shared A vertexes) in A, and sum(b_i) - (even #shared B vertexes) in B.

This implies that R either has 4 A vertexes (so we're done) or 2 A vertexes (we're also done).
Hello friends
TabyLing
Profile Blog Joined July 2008
Australia69 Posts
September 05 2011 22:36 GMT
#14
+ Show Spoiler +

rational + rational = rational
irational +rational = irational
irational + irational = irational (nonzero positive numbers)
if a is irrational and made up of rectangles with n parallel sides rational and m irrational then b can't exist, as you will have layers of rational numbers added and layers of irrational numbers added and they must = the same number. all the rational numbers must be parallel with each other and all the irrational numbers must be in parallel, so the rectangle R must have a rational side.

if the rectangle can be broken into squares you can break a and b up into smaller units with a common factor (since they are squares) say c, so
a = mc and b = nc so a/b = mc/nc = m/n = rational number.
in the particular picture example a = 3c and b = a + 2c = 3c +2c = 5c
so a/b = 3c/5c = 3/5
sidr
Profile Blog Joined May 2008
United States55 Posts
Last Edited: 2011-09-05 22:47:51
September 05 2011 22:44 GMT
#15
blankspace:

+ Show Spoiler +
Correct.

If anyone wants to keep thinking about this problem, there are at least two other nice solutions that I know of (three if you count one that's related to the way you did it).


Tabyling:

+ Show Spoiler +
irrational + irrational may be rational, consider (3-Sqrt(2)) + Sqrt(2) = 3. For 2 it's unclear that m and n are integers.
THE_DOMINATOR
Profile Blog Joined April 2010
United States309 Posts
September 05 2011 23:06 GMT
#16
On September 06 2011 06:57 AcrossFiveJulys wrote:
Show nested quote +
On September 06 2011 06:53 THE_DOMINATOR wrote:
Here's some good old fashion logic for you.

1) Let R be divided into 2 equal rectangles. that leaves you with with x/2+x/2 =x where x/2 is the rational side of an inner rectangle. The sum of rational numbers will always be rational.


This is true in the case where R can be subdivided into 2 equal rectangles. But in the general case R can be subdivided into N rectangles with possibly different sizes.

I.e., you can't choose the exact configuration of inside rectangles. If you could, an even simpler solution than the one you gave would say there is exactly one rectangle inside R with the same dimensions as R, which must have at least one rational side so R has at least one rational side.


Then the question is poorly constructed. If R can be subdivided into N rectangles, 2 is part of the set N. Even so the general principle still applies.
DOMINATION
sidr
Profile Blog Joined May 2008
United States55 Posts
September 05 2011 23:10 GMT
#17
On September 06 2011 08:06 THE_DOMINATOR wrote:
Show nested quote +
On September 06 2011 06:57 AcrossFiveJulys wrote:
On September 06 2011 06:53 THE_DOMINATOR wrote:
Here's some good old fashion logic for you.

1) Let R be divided into 2 equal rectangles. that leaves you with with x/2+x/2 =x where x/2 is the rational side of an inner rectangle. The sum of rational numbers will always be rational.


This is true in the case where R can be subdivided into 2 equal rectangles. But in the general case R can be subdivided into N rectangles with possibly different sizes.

I.e., you can't choose the exact configuration of inside rectangles. If you could, an even simpler solution than the one you gave would say there is exactly one rectangle inside R with the same dimensions as R, which must have at least one rational side so R has at least one rational side.


Then the question is poorly constructed. If R can be subdivided into N rectangles, 2 is part of the set N. Even so the general principle still applies.


The question is not poorly constructed; all that it says is that such a subdivision exists. How many rectangles this subdivision has is unknown.
TabyLing
Profile Blog Joined July 2008
Australia69 Posts
Last Edited: 2011-09-06 00:41:09
September 06 2011 00:38 GMT
#18
On September 06 2011 07:44 sidr wrote:


Tabyling:

+ Show Spoiler +
irrational + irrational may be rational, consider (3-Sqrt(2)) + Sqrt(2) = 3. For 2 it's unclear that m and n are integers.

didnt read properly edit
MrDonkeyBong
Profile Blog Joined April 2011
Canada103 Posts
September 06 2011 00:54 GMT
#19
On September 06 2011 06:21 micronesia wrote:
Gar.... I hate math puzzles that you can't work on unless you studied higher math... XD

I have no idea how to show if things are or are not rational ._.

We did rational numbers last year (9th grade).

I think the curriculum changed on you
"If you wish to make an apple pie from scratch, you must first invent the universe." -- Carl Sagan
blankspace
Profile Blog Joined June 2010
United States292 Posts
September 06 2011 01:32 GMT
#20
lol well I remember learning what a rational number was early in elementary school, but most people don't encounter proofs about irrationality unless they decide to study more math. Although basic facts like rational+rational = rational, rational + irrational = irrational, rational*irrational = irrational etc are likely all u need in these puzzles.
Hello friends
Muirhead
Profile Blog Joined October 2007
United States556 Posts
September 06 2011 01:51 GMT
#21
+ Show Spoiler +
2) Let's use the same coordinates as blankspace:

Label all the vertices of the squares in the subdivision of the rectangle as v_0,v_1,v_2,...,v_n.

Consider the 45 degree line passing through (0,0) and let P be the projection map onto this line.
Let w_i denote P(v_i).

The image of P is a 1-dimensional real vector space which inherits a norm from the copy of the plane it sits in.

We have marked some elements w_i in this vector space. WLOG we can order these so that they weakly increase in norm.

In particular:
1) w_0 refers to 0 (corresponding to the lower-left corner of the rectangle)
2) w_n refers to the element with largest norm (corresponding to the upper-right corner)

The key is to note that every w_i for 0<i<n exists as the average of two other w_j.

It follows by induction on norm that the span of the w_i is a 1-dimensional Q-subspace of the image of P considered as a Q-vector space.

That should do it I believe...
starleague.mit.edu
micronesia
Profile Blog Joined July 2006
United States24682 Posts
September 06 2011 01:59 GMT
#22
On September 06 2011 09:54 MrDonkeyBong wrote:
Show nested quote +
On September 06 2011 06:21 micronesia wrote:
Gar.... I hate math puzzles that you can't work on unless you studied higher math... XD

I have no idea how to show if things are or are not rational ._.

We did rational numbers last year (9th grade).

I think the curriculum changed on you

Um, I learned what a rational number is also. I'm talking about using proofs to show whether or not numbers will be rational in various situations.
ModeratorThere are animal crackers for people and there are people crackers for animals.
sidr
Profile Blog Joined May 2008
United States55 Posts
September 06 2011 03:43 GMT
#23
Muirhead:

+ Show Spoiler +
I like the idea but I'm not sure I follow the induction
Muirhead
Profile Blog Joined October 2007
United States556 Posts
September 06 2011 04:14 GMT
#24
On September 06 2011 12:43 sidr wrote:
Muirhead:

+ Show Spoiler +
I like the idea but I'm not sure I follow the induction


Nice puzzle . Sorry I explain everything awkwardly...
maybe later I try to motivate it... I think it's always a good exercise to refine a proof or think why one does things, especially with a good problem like this

For now though the induction. Let's write it as lemma:

+ Show Spoiler +
We are given a finite collection of real numbers which satisfies:
(1) 0 is its minimum member
(2) Each member strictly between 0 and the maximum member is the average of two other members.

I claim each member of the collection is a nonnegative rational multiple of the maximum member.

For this, it suffices to prove that each non-maximal member is a nonnegative rational combination of strictly larger members.

Suppose not. Then there is a smallest counterexample A. A is not 0, since 0 is a nonnegative rational combination of larger guys trivially. Thus, A is the average of two other members. Writing A as this average we can apply the minimality of A to massage the lower member of this average into a nonnegative rational linear combination of guys A or larger.

Since the part of this combination that is not a multiple of A is strictly positive, we cannot completely cancel out A and so have a contradiction.
starleague.mit.edu
Foolishness *
Profile Blog Joined May 2009
United States3044 Posts
September 06 2011 05:29 GMT
#25
I have an idea...

For solving number 2) in the OP, say you already have a square (which is a rectangle by definition), then you satisfy the requirement (a/b is rational) trivially.

Take our rectangle with side lengths a and b with a < b. Observe the smallest square that is created when we partition our rectangle into squares. Call any side of this square s. I claim that there necessarily exists another square (created from our partitions) that has side of ms where m is some positive integer. I also claim that this square will be the next to smallest square. *

Let's suppose for now that my claim is true. Then we can recursively apply this fact to the next higher up square. For example, we know there exists a square with side ms. If this square is not the biggest square, then there exists another square with side mns, where n is some positive integer. We can keep doing this until every square is classified as such.

Now, when such a feat is accomplished, observe the lengths of a and b. Both of these lengths will necessarily be some multiple of s. For example we would expect something like b = s + 2ms + mns. Thus we can factor out an s, and when we divide we will be left over with all the m and n which are positive integers. Thus regardless of the rationality of s, a/b is rational.

* I am relatively certain my claim holds true, but I'm still working on the proof. The idea I have to verify my claim is with a proof by contradiction. If there did not exist another square with side of ms then it would be impossible to construct a rectangle using only squares. If this plan fails then I have another idea for a proof by contradiction which involves verifying that the area of all the squares equals the area of the whole rectangle. If there did not exist a side with length ms then the areas won't ever equal.
geript: "Foolishness's cases are persuasive and reasonable but leave you feeling dirty afterwards. Kinda like a whore." ---- Manager of the TL Mafia forum, come play!
fasdaf
Profile Blog Joined August 2011
138 Posts
Last Edited: 2011-09-06 15:46:29
September 06 2011 15:46 GMT
#26
On September 06 2011 14:29 Foolishness wrote:
Take our rectangle with side lengths a and b with a < b. Observe the smallest square that is created when we partition our rectangle into squares. Call any side of this square s. I claim that there necessarily exists another square (created from our partitions) that has side of ms where m is some positive integer. I also claim that this square will be the next to smallest square. *

This is not true. Consider a 6x7 rectangle split into one 4x4, two 3x3, and two 2x2 squares.

Just something I noticed related to (2): the Euclidean algorithm provides an easy way to partition any rectangle with rational sides into squares.
Foolishness *
Profile Blog Joined May 2009
United States3044 Posts
September 06 2011 17:03 GMT
#27
On September 07 2011 00:46 fasdaf wrote:
Show nested quote +
On September 06 2011 14:29 Foolishness wrote:
Take our rectangle with side lengths a and b with a < b. Observe the smallest square that is created when we partition our rectangle into squares. Call any side of this square s. I claim that there necessarily exists another square (created from our partitions) that has side of ms where m is some positive integer. I also claim that this square will be the next to smallest square. *

This is not true. Consider a 6x7 rectangle split into one 4x4, two 3x3, and two 2x2 squares.

Just something I noticed related to (2): the Euclidean algorithm provides an easy way to partition any rectangle with rational sides into squares.

Okay. Let me modify. Take the smallest square that is created by our partition and take the largest square created by our partition, and call the sides of these squares s and L respectively. I claim that the sides all other squares in the partition can be represented as a convex combination of s and L.

The rest of the proof should work out to be the same, although I may need to claim that s and L are both irrational or both rational.
geript: "Foolishness's cases are persuasive and reasonable but leave you feeling dirty afterwards. Kinda like a whore." ---- Manager of the TL Mafia forum, come play!
blankspace
Profile Blog Joined June 2010
United States292 Posts
September 06 2011 19:09 GMT
#28
ooh nice solution muirhead
Hello friends
marttorn
Profile Blog Joined May 2011
Norway5211 Posts
September 06 2011 19:15 GMT
#29
m-m-math puzzles?....

I'm having flashbacks...

AARAARAHAGHHHAHGAHAHH E+ IN MATH OH GOD IM SO DISSAPOINTED IN MYSELF I HAVE TO END IT NOW AARGHAAAAHAHAAAAAh....

No... no math puzzles... I would like to forget
memes are a dish best served dank
sidr
Profile Blog Joined May 2008
United States55 Posts
Last Edited: 2011-09-07 02:48:47
September 07 2011 02:47 GMT
#30
Good stuff Muirhead.

For anyone interested, here is a different solution to each puzzle:

1. + Show Spoiler +
Orient the rectangle so that its sides are parallel with the x and y axes. Without loss of generality each smaller rectangle has an integer side length (scale by LCM of denominators). Then, consider Integral(exp(2*Pi*i*(x+y)) dx dy). This is 0 over a rectangle if and only if the rectangle has an integer side length. By additivity of the integral, we are done.


2. + Show Spoiler +
Suppose the rectangle has side lengths 1,a with a irrational. We show a tiling of squares leads to a contradiction.

Suppose we have a tiling of squares and extend each line segment to the edges, creating a rectangular grid of our rectangle. Consider the set S={x: x is the side length of some rectangle in our rectangular grid}. Consider the vector space V over Q generated by S. As a is irrational, we may find a basis {1,a,b3,...,bk}. Define a linear functional f (a linear map from V to Q) by f(1) = 1, f(a) = -1, and f(bi) = 0 for i in {3,...,k}. Finally, define an "area" function on our subrectangles T by g(T)=f(c)f(d), where c, d are the side lengths of T. Then, note g is additive by linearity of f and g(S) is nonnegative for any square S, but g(R) = -1.
Normal
Please log in or register to reply.
Live Events Refresh
WardiTV Summer Champion…
11:00
Open Qualifier #1
WardiTV584
Liquipedia
OSC
10:00
Elite Rising Star #16 - Day 1
CranKy Ducklings99
Liquipedia
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
Harstem 347
ProTech44
Codebar 1
StarCraft: Brood War
Bisu 1850
Shuttle 1727
Flash 1099
Killer 727
hero 634
EffOrt 561
Zeus 501
Larva 416
ggaemo 384
firebathero 318
[ Show more ]
Mini 288
Pusan 259
Soulkey 215
Hyuk 182
Snow 155
ZerO 129
Soma 125
Dewaltoss 123
Mong 120
TY 70
Rush 56
ToSsGirL 53
PianO 46
Sea.KH 40
JYJ40
Backho 30
sSak 28
Movie 27
sorry 26
Sharp 23
Icarus 16
scan(afreeca) 16
[sc1f]eonzerg 15
ajuk12(nOOB) 13
SilentControl 13
JulyZerg 10
IntoTheRainbow 7
Bale 5
Dota 2
qojqva1208
XaKoH 460
XcaliburYe290
Counter-Strike
x6flipin658
byalli302
Other Games
singsing2041
B2W.Neo1163
Beastyqt513
crisheroes380
DeMusliM360
Happy234
hiko222
RotterdaM206
Fuzer 169
Lowko157
rGuardiaN110
ArmadaUGS96
oskar79
PartinGtheBigBoy34
QueenE19
ZerO(Twitch)9
Organizations
Other Games
gamesdonequick975
StarCraft: Brood War
UltimateBattle 20
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 13 non-featured ]
StarCraft 2
• davetesta18
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• WagamamaTV326
League of Legends
• Nemesis3203
Upcoming Events
WardiTV Summer Champion…
2h 31m
PiGosaur Monday
11h 31m
WardiTV Summer Champion…
22h 31m
Stormgate Nexus
1d 1h
uThermal 2v2 Circuit
1d 3h
The PondCast
1d 21h
WardiTV Summer Champion…
1d 22h
Replay Cast
2 days
LiuLi Cup
2 days
uThermal 2v2 Circuit
3 days
[ Show More ]
RSL Revival
3 days
RSL Revival
3 days
uThermal 2v2 Circuit
4 days
CSO Cup
4 days
Sparkling Tuna Cup
4 days
uThermal 2v2 Circuit
5 days
Wardi Open
5 days
RotterdaM Event
6 days
Liquipedia Results

Completed

ASL Season 20: Qualifier #2
FEL Cracow 2025
CC Div. A S7

Ongoing

Copa Latinoamericana 4
Jiahua Invitational
BSL 20 Team Wars
KCM Race Survival 2025 Season 3
BSL 21 Qualifiers
HCC Europe
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025

Upcoming

ASL Season 20
CSLPRO Chat StarLAN 3
BSL Season 21
BSL 21 Team A
RSL Revival: Season 2
Maestros of the Game
SEL Season 2 Championship
WardiTV Summer 2025
uThermal 2v2 Main Event
Thunderpick World Champ.
MESA Nomadic Masters Fall
CS Asia Championships 2025
Roobet Cup 2025
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.