• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 08:01
CEST 14:01
KST 21:01
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
Serral wins EWC 202537Tournament Spotlight: FEL Cracow 202510Power Rank - Esports World Cup 202580RSL Season 1 - Final Week9[ASL19] Finals Recap: Standing Tall15
Community News
LiuLi Cup - August 2025 Tournaments3[BSL 2025] H2 - Team Wars, Weeklies & SB Ladder9EWC 2025 - Replay Pack4Google Play ASL (Season 20) Announced51BSL Team Wars - Bonyth, Dewalt, Hawk & Sziky teams10
StarCraft 2
General
Teller Digital Interview with Chris "ChanmanV" Chan The GOAT ranking of GOAT rankings Serral wins EWC 2025 Tournament Spotlight: FEL Cracow 2025
Tourneys
Sparkling Tuna Cup - Weekly Open Tournament LiuLi Cup - August 2025 Tournaments Sea Duckling Open (Global, Bronze-Diamond) TaeJa vs Creator Bo7 SC Evo Showmatch FEL Cracov 2025 (July 27) - $10,000 live event
Strategy
Custom Maps
External Content
Mutation # 484 Magnetic Pull Mutation #239 Bad Weather Mutation # 483 Kill Bot Wars Mutation # 482 Wheel of Misfortune
Brood War
General
Google Play ASL (Season 20) Announced Nobody gona talk about this year crazy qualifiers? Which top zerg/toss will fail in qualifiers? Scmdraft 2 - 0.9.0 Preview BW General Discussion
Tourneys
[ASL20] Online Qualifiers Day 2 [ASL20] Online Qualifiers Day 1 [Megathread] Daily Proleagues Small VOD Thread 2.0
Strategy
[G] Mineral Boosting Muta micro map competition Does 1 second matter in StarCraft? Simple Questions, Simple Answers
Other Games
General Games
Stormgate/Frost Giant Megathread Nintendo Switch Thread Beyond All Reason Total Annihilation Server - TAForever [MMORPG] Tree of Savior (Successor of Ragnarok)
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
9/11 Anniversary Possible Al Qaeda Attack on 9/11 US Politics Mega-thread Things Aren’t Peaceful in Palestine European Politico-economics QA Mega-thread
Fan Clubs
INnoVation Fan Club SKT1 Classic Fan Club!
Media & Entertainment
[Manga] One Piece Anime Discussion Thread [\m/] Heavy Metal Thread Movie Discussion! Korean Music Discussion
Sports
Formula 1 Discussion 2024 - 2025 Football Thread TeamLiquid Health and Fitness Initiative For 2023
World Cup 2022
Tech Support
Gtx660 graphics card replacement Installation of Windows 10 suck at "just a moment" Computer Build, Upgrade & Buying Resource Thread
TL Community
TeamLiquid Team Shirt On Sale The Automated Ban List
Blogs
ASL S20 English Commentary…
namkraft
The Link Between Fitness and…
TrAiDoS
momentary artworks from des…
tankgirl
from making sc maps to makin…
Husyelt
StarCraft improvement
iopq
Socialism Anyone?
GreenHorizons
Customize Sidebar...

Website Feedback

Closed Threads



Active: 680 users

Math Puzzle(s)

Blogs > sidr
Post a Reply
1 2 Next All
sidr
Profile Blog Joined May 2008
United States55 Posts
September 05 2011 21:19 GMT
#1
Hey all, I have two somewhat similar math puzzles for those interested:

1) Let R be a rectangle. Suppose R can be divided into rectangles (non-overlapping except on edges) such that each rectangle has at least one rational side length. Show R has at least one rational side length.

2) Let R be a rectangle with sides a,b. Suppose R can be divided into squares (non-overlapping except on edges). Show that a/b is rational.

Pictures: + Show Spoiler +
[image loading]

Uploaded with ImageShack.us


Enjoy.

micronesia
Profile Blog Joined July 2006
United States24680 Posts
September 05 2011 21:21 GMT
#2
Gar.... I hate math puzzles that you can't work on unless you studied higher math... XD

I have no idea how to show if things are or are not rational ._.
ModeratorThere are animal crackers for people and there are people crackers for animals.
sidr
Profile Blog Joined May 2008
United States55 Posts
Last Edited: 2011-09-05 21:30:32
September 05 2011 21:29 GMT
#3
well there are "standard" approaches in some cases, but it wouldn't be much of a puzzle if first instincts existed/worked.

Here's a quick rundown of the fact that Sqrt(2) is irrational if you want to see one such technique:
+ Show Spoiler +
Suppose Sqrt(2) = a/b with a, b integers. We may assume a and b have no common prime factors (lowest terms). We have (b Sqrt(2)) = a or, after squaring both sides, 2b^2 = a^2. Hence, a^2 is even. By prime factorization, a must be even, so a = 2c for some integer c. Now we have 2 b^2 = (2c)^2 = 4c^2, so cancelling 2's we have b^2 = 2 c^2. Hence, b must also be even, contradicting that a/b was in lowest terms. Thus, Sqrt(2) must be irrational.
AcrossFiveJulys
Profile Blog Joined September 2005
United States3612 Posts
Last Edited: 2011-09-05 21:30:59
September 05 2011 21:30 GMT
#4
On September 06 2011 06:21 micronesia wrote:
Gar.... I hate math puzzles that you can't work on unless you studied higher math... XD

I have no idea how to show if things are or are not rational ._.


a number n is rational if and only if it can be expressed as n = p/q, for some integers p and q. so if you can prove that such a p and q must exist, you prove the number is rational; conversely, if you prove that such a p and q cannot exist, you prove the number is irrational.
n.DieJokes
Profile Blog Joined November 2008
United States3443 Posts
September 05 2011 21:30 GMT
#5
No idea, don't have the necessary skills to solve either of them.
Alternate problem everyone can relate to. Using dollars, half dollars, quarters, dimes, nickels and pennies whats the smallest value of k that is not convertible where being convertible means it is possible to find a collection of k coins adding up to a dollar. Ex: 1 is convertible because we just use the dollar, 2 is also convertible because 2 half dollars etc.. Have fun, I'll post the solution if theres interest
MyLove + Your Love= Supa Love
The_Templar
Profile Blog Joined January 2011
your Country52797 Posts
September 05 2011 21:39 GMT
#6
On September 06 2011 06:30 n.DieJokes wrote:
No idea, don't have the necessary skills to solve either of them.
Alternate problem everyone can relate to. Using dollars, half dollars, quarters, dimes, nickels and pennies whats the smallest value of k that is not convertible where being convertible means it is possible to find a collection of k coins adding up to a dollar. Ex: 1 is convertible because we just use the dollar, 2 is also convertible because 2 half dollars etc.. Have fun, I'll post the solution if theres interest

101?
Moderatorshe/her
TL+ Member
n.DieJokes
Profile Blog Joined November 2008
United States3443 Posts
Last Edited: 2011-09-05 21:41:05
September 05 2011 21:40 GMT
#7
On September 06 2011 06:39 TehTemplar wrote:
Show nested quote +
On September 06 2011 06:30 n.DieJokes wrote:
No idea, don't have the necessary skills to solve either of them.
Alternate problem everyone can relate to. Using dollars, half dollars, quarters, dimes, nickels and pennies whats the smallest value of k that is not convertible where being convertible means it is possible to find a collection of k coins adding up to a dollar. Ex: 1 is convertible because we just use the dollar, 2 is also convertible because 2 half dollars etc.. Have fun, I'll post the solution if theres interest

101?

You can go smaller + Show Spoiler +
for example, does 99 work?
MyLove + Your Love= Supa Love
AcrossFiveJulys
Profile Blog Joined September 2005
United States3612 Posts
Last Edited: 2011-09-05 21:42:50
September 05 2011 21:41 GMT
#8
1.
+ Show Spoiler +

Here's an outline for how I would prove this if I had time to fill in the details.

Assume a configuration of rectangles such that each has at least one rational side. Call the set of all horizontal rational sides H, and the set of all vertical rational sides V.
Show that there must be a subset of either H or V such that the length of the sides add up to a multiple of the length of R's horizontal or vertical side [this is the nontrivial part].
Since the sum of rational numbers must be rational, and a multiple of a rational number must be rational, this implies that at least one of R's sides must be rational.
AcrossFiveJulys
Profile Blog Joined September 2005
United States3612 Posts
September 05 2011 21:51 GMT
#9
On September 06 2011 06:30 n.DieJokes wrote:
No idea, don't have the necessary skills to solve either of them.
Alternate problem everyone can relate to. Using dollars, half dollars, quarters, dimes, nickels and pennies whats the smallest value of k that is not convertible where being convertible means it is possible to find a collection of k coins adding up to a dollar. Ex: 1 is convertible because we just use the dollar, 2 is also convertible because 2 half dollars etc.. Have fun, I'll post the solution if theres interest


I'd just write a program to solve this one... I can't think of a way to derive an analytical solution for k.
THE_DOMINATOR
Profile Blog Joined April 2010
United States309 Posts
September 05 2011 21:53 GMT
#10
Here's some good old fashion logic for you.

1) Let R be divided into 2 equal rectangles. that leaves you with with x/2+x/2 =x where x/2 is the rational side of an inner rectangle. The sum of rational numbers will always be rational.

2) let c=a/b =>c is rational. c=a/b =>a/b is rational just restating the definition
DOMINATION
AcrossFiveJulys
Profile Blog Joined September 2005
United States3612 Posts
September 05 2011 21:57 GMT
#11
On September 06 2011 06:53 THE_DOMINATOR wrote:
Here's some good old fashion logic for you.

1) Let R be divided into 2 equal rectangles. that leaves you with with x/2+x/2 =x where x/2 is the rational side of an inner rectangle. The sum of rational numbers will always be rational.


This is true in the case where R can be subdivided into 2 equal rectangles. But in the general case R can be subdivided into N rectangles with possibly different sizes.

I.e., you can't choose the exact configuration of inside rectangles. If you could, an even simpler solution than the one you gave would say there is exactly one rectangle inside R with the same dimensions as R, which must have at least one rational side so R has at least one rational side.
sidr
Profile Blog Joined May 2008
United States55 Posts
September 05 2011 22:15 GMT
#12
For n.DieJokes' puzzle:

+ Show Spoiler +
I claim 77 is the lowest nonconvertible denomination.

First, let's look at what only nickels and pennies get us:
suppose we have n nickels and p pennies adding to 100. Then, 5n + p = 100, so p = 100 - 5n. In this case, we have n + p = 100 - 4n coins, so using only nickels and pennies we see every number in {100, 96, 92, ..., 20} is convertible.

Now, given a number of this form, say x, let's try to show x+1, x+2, and x+3 are convertible. If we have x = 100 - 4n, we can make x+3 by changing 1 nickel for 5 pennies (+4 coins) and changing 2 nickels for 1 dime (-1 coins). To make x+2, we can change 1 nickel for 5 pennies (+4 coins) and 4 nickels for 2 dimes (-2 coins). To make x+1, we can change 1 nickel for 5 pennies (+4 coins) and 6 nickels for 3 dimes (-2 coins). For this all to work, we need n to be at least 7. This always works for such n though, so {20, 21, ..., 100-4(7)} contains only convertible numbers. 100-4(7) = 72. The above process gives us 74 and 75, so we need to create 73, which is 3 dimes + 70 pennies. Hence, assuming 1,...,19 are all convertible, then the smallest possibly nonconvertible number is 77.

We wish to find 77 coins which total 100. Using nickels and pennies only this is impossible as shown above, and if we use a quarter we will not be able to use all 77 coins as 100-25=75 which is less than 77-1=76. Suppose we have 1 dime. Then, we want to make 90 out of 76 nickels and pennies, so we wish to solve 5n+p=90 and n+p=76 simultaneously. This gives p = 90-5n so n+p=90-4n=76, so 4n=14 which is impossible. Now, if we have 2 dimes, we wish to make 80 out of 75 nickels and pennies. Our equations are n+p=75 and 5n+p=80, so p=80-5n and hence n+(80-5n)=80-4n=75, so 4n=5 which is impossible. With 3 dimes, we need to make 70 out of more than 70 coins, which is impossible, so 77 is not convertible.

Finally, we need to demonstrate 1,...,19 are all convertible. We have:
1. 100
2. 2(50)
3. 50 + 2(25)
4. 4(25)
5. 50 + 25 + 2(10) + 5
6. 50 + 25 + 10 + 3(5)
7. 50 + 25 + 5(5)
8. 50 + 3(10) + 4(5)
9. 50 + 2(10) + 6(5)
10. 50 + 10 + 8(5)
11. 50 + 10(5)
12. 50 + 3(10) + 3(5) + 5(1)
13. 50 + 2(10) + 5(5) + 5(1)
14. 50 + 10 + 7(5) + 5(1)
15. 50 + 9(5) + 5(1)
16. 50 + 3(10) + 2(5) + 10(1)
17. 50 + 2(10) + 4(5) + 10(1)
18. 50 + 10 + 6(5) + 10(1)
19. 50 + 8(5) + 10(1)
blankspace
Profile Blog Joined June 2010
United States292 Posts
September 05 2011 22:18 GMT
#13
1) Nice problem, kinda tricky

Let's place the rectangle in the coordinate plane and assume the bottom left corner is (0,0).

Call a vertex A if it has rational coordinates, B otherwise.

Fact: A rectangle can't have an odd number of A vertexes (you may verify this yourself).

Now let's count how many A vertexes and B vertexes R has. We do this by summing over all inner rectangles and removing the shared points. Note that only the corner vertexes are not shared by some rectangle, and each vertex is shared by either two or four rectangles.

Each rectangle r_i contributes a_i and b_i where a_i and b_i are even. Hence the number of corner vertexes is: sum(a_i) - (even #shared A vertexes) in A, and sum(b_i) - (even #shared B vertexes) in B.

This implies that R either has 4 A vertexes (so we're done) or 2 A vertexes (we're also done).
Hello friends
TabyLing
Profile Blog Joined July 2008
Australia69 Posts
September 05 2011 22:36 GMT
#14
+ Show Spoiler +

rational + rational = rational
irational +rational = irational
irational + irational = irational (nonzero positive numbers)
if a is irrational and made up of rectangles with n parallel sides rational and m irrational then b can't exist, as you will have layers of rational numbers added and layers of irrational numbers added and they must = the same number. all the rational numbers must be parallel with each other and all the irrational numbers must be in parallel, so the rectangle R must have a rational side.

if the rectangle can be broken into squares you can break a and b up into smaller units with a common factor (since they are squares) say c, so
a = mc and b = nc so a/b = mc/nc = m/n = rational number.
in the particular picture example a = 3c and b = a + 2c = 3c +2c = 5c
so a/b = 3c/5c = 3/5
sidr
Profile Blog Joined May 2008
United States55 Posts
Last Edited: 2011-09-05 22:47:51
September 05 2011 22:44 GMT
#15
blankspace:

+ Show Spoiler +
Correct.

If anyone wants to keep thinking about this problem, there are at least two other nice solutions that I know of (three if you count one that's related to the way you did it).


Tabyling:

+ Show Spoiler +
irrational + irrational may be rational, consider (3-Sqrt(2)) + Sqrt(2) = 3. For 2 it's unclear that m and n are integers.
THE_DOMINATOR
Profile Blog Joined April 2010
United States309 Posts
September 05 2011 23:06 GMT
#16
On September 06 2011 06:57 AcrossFiveJulys wrote:
Show nested quote +
On September 06 2011 06:53 THE_DOMINATOR wrote:
Here's some good old fashion logic for you.

1) Let R be divided into 2 equal rectangles. that leaves you with with x/2+x/2 =x where x/2 is the rational side of an inner rectangle. The sum of rational numbers will always be rational.


This is true in the case where R can be subdivided into 2 equal rectangles. But in the general case R can be subdivided into N rectangles with possibly different sizes.

I.e., you can't choose the exact configuration of inside rectangles. If you could, an even simpler solution than the one you gave would say there is exactly one rectangle inside R with the same dimensions as R, which must have at least one rational side so R has at least one rational side.


Then the question is poorly constructed. If R can be subdivided into N rectangles, 2 is part of the set N. Even so the general principle still applies.
DOMINATION
sidr
Profile Blog Joined May 2008
United States55 Posts
September 05 2011 23:10 GMT
#17
On September 06 2011 08:06 THE_DOMINATOR wrote:
Show nested quote +
On September 06 2011 06:57 AcrossFiveJulys wrote:
On September 06 2011 06:53 THE_DOMINATOR wrote:
Here's some good old fashion logic for you.

1) Let R be divided into 2 equal rectangles. that leaves you with with x/2+x/2 =x where x/2 is the rational side of an inner rectangle. The sum of rational numbers will always be rational.


This is true in the case where R can be subdivided into 2 equal rectangles. But in the general case R can be subdivided into N rectangles with possibly different sizes.

I.e., you can't choose the exact configuration of inside rectangles. If you could, an even simpler solution than the one you gave would say there is exactly one rectangle inside R with the same dimensions as R, which must have at least one rational side so R has at least one rational side.


Then the question is poorly constructed. If R can be subdivided into N rectangles, 2 is part of the set N. Even so the general principle still applies.


The question is not poorly constructed; all that it says is that such a subdivision exists. How many rectangles this subdivision has is unknown.
TabyLing
Profile Blog Joined July 2008
Australia69 Posts
Last Edited: 2011-09-06 00:41:09
September 06 2011 00:38 GMT
#18
On September 06 2011 07:44 sidr wrote:


Tabyling:

+ Show Spoiler +
irrational + irrational may be rational, consider (3-Sqrt(2)) + Sqrt(2) = 3. For 2 it's unclear that m and n are integers.

didnt read properly edit
MrDonkeyBong
Profile Blog Joined April 2011
Canada103 Posts
September 06 2011 00:54 GMT
#19
On September 06 2011 06:21 micronesia wrote:
Gar.... I hate math puzzles that you can't work on unless you studied higher math... XD

I have no idea how to show if things are or are not rational ._.

We did rational numbers last year (9th grade).

I think the curriculum changed on you
"If you wish to make an apple pie from scratch, you must first invent the universe." -- Carl Sagan
blankspace
Profile Blog Joined June 2010
United States292 Posts
September 06 2011 01:32 GMT
#20
lol well I remember learning what a rational number was early in elementary school, but most people don't encounter proofs about irrationality unless they decide to study more math. Although basic facts like rational+rational = rational, rational + irrational = irrational, rational*irrational = irrational etc are likely all u need in these puzzles.
Hello friends
1 2 Next All
Please log in or register to reply.
Live Events Refresh
Sparkling Tuna Cup
10:00
Weekly #100
ByuN vs CreatorLIVE!
ShoWTimE vs SKillous
CranKy Ducklings304
Liquipedia
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
EmSc Tv 44
ProTech35
Aristorii 11
MindelVK 4
StarCraft: Brood War
Calm 7677
Horang2 2344
BeSt 1666
ggaemo 1388
Hyuk 780
Britney 757
Nal_rA 582
Larva 562
firebathero 404
Mini 396
[ Show more ]
hero 388
Hyun 260
Mong 258
TY 173
Leta 157
Zeus 150
ToSsGirL 103
Sharp 51
zelot 35
Killer 25
Noble 24
Icarus 18
ivOry 3
Dota 2
qojqva1498
XcaliburYe570
Counter-Strike
x6flipin766
byalli489
Super Smash Bros
Westballz35
Heroes of the Storm
Khaldor321
Other Games
B2W.Neo801
DeMusliM447
Fuzer 224
ArmadaUGS9
Organizations
StarCraft 2
EmSc Tv 44
EmSc2Tv 44
StarCraft: Brood War
CasterMuse 34
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 15 non-featured ]
StarCraft 2
• davetesta48
• Gemini_19 12
• Reevou 2
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• WagamamaTV1000
League of Legends
• Jankos1357
Upcoming Events
BSL20 Non-Korean Champi…
2h
Bonyth vs TBD
WardiTV European League
4h
ByuN vs ShoWTimE
HeRoMaRinE vs MaxPax
Wardi Open
23h
OSC
1d 12h
uThermal 2v2 Circuit
3 days
The PondCast
3 days
Replay Cast
4 days
uThermal 2v2 Circuit
5 days
RSL Revival
5 days
RSL Revival
5 days
[ Show More ]
uThermal 2v2 Circuit
6 days
Sparkling Tuna Cup
6 days
Liquipedia Results

Completed

ASL Season 20: Qualifier #1
FEL Cracow 2025
CC Div. A S7

Ongoing

Copa Latinoamericana 4
Jiahua Invitational
BSL 20 Team Wars
KCM Race Survival 2025 Season 3
BSL 21 Qualifiers
ASL Season 20: Qualifier #2
HCC Europe
IEM Cologne 2025
FISSURE Playground #1
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025

Upcoming

ASL Season 20
CSLPRO Chat StarLAN 3
BSL Season 21
RSL Revival: Season 2
Maestros of the Game
SEL Season 2 Championship
WardiTV Summer 2025
uThermal 2v2 Main Event
Thunderpick World Champ.
MESA Nomadic Masters Fall
CAC 2025
Roobet Cup 2025
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.