• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 21:43
CEST 03:43
KST 10:43
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
[ASL20] Ro16 Preview Pt1: Ascent8Maestros of the Game: Week 1/Play-in Preview12[ASL20] Ro24 Preview Pt2: Take-Off7[ASL20] Ro24 Preview Pt1: Runway132v2 & SC: Evo Complete: Weekend Double Feature4
Community News
Weekly Cups (Sept 1-7): MaxPax rebounds & Clem saga continues9LiuLi Cup - September 2025 Tournaments2Weekly Cups (August 25-31): Clem's Last Straw?39Weekly Cups (Aug 18-24): herO dethrones MaxPax6Maestros of The Game—$20k event w/ live finals in Paris72
StarCraft 2
General
Weekly Cups (Sept 1-7): MaxPax rebounds & Clem saga continues Team Liquid Map Contest #21 - Presented by Monster Energy What happened to Singapore/Brazil servers? #1: Maru - Greatest Players of All Time Production Quality - Maestros of the Game Vs RSL 2
Tourneys
Maestros of The Game—$20k event w/ live finals in Paris Sparkling Tuna Cup - Weekly Open Tournament RSL: Revival, a new crowdfunded tournament series Chzzk MurlocKing SC1 vs SC2 Cup Sea Duckling Open (Global, Bronze-Diamond)
Strategy
Custom Maps
External Content
Mutation # 490 Masters of Midnight Mutation # 489 Bannable Offense Mutation # 488 What Goes Around Mutation # 487 Think Fast
Brood War
General
FlaSh on ACS Winners being in ASL ASL20 General Discussion BGH Auto Balance -> http://bghmmr.eu/ BSL Polish World Championship 2025 20-21 September [ASL20] Ro16 Preview Pt1: Ascent
Tourneys
[ASL20] Ro16 Group A [IPSL] ISPL Season 1 Winter Qualis and Info! [Megathread] Daily Proleagues Is there English video for group selection for ASL
Strategy
Simple Questions, Simple Answers Muta micro map competition Fighting Spirit mining rates [G] Mineral Boosting
Other Games
General Games
Stormgate/Frost Giant Megathread Nintendo Switch Thread General RTS Discussion Thread Path of Exile Warcraft III: The Frozen Throne
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
US Politics Mega-thread Things Aren’t Peaceful in Palestine The Games Industry And ATVI UK Politics Mega-thread Russo-Ukrainian War Thread
Fan Clubs
The Happy Fan Club!
Media & Entertainment
[Manga] One Piece Anime Discussion Thread Movie Discussion! [\m/] Heavy Metal Thread
Sports
2024 - 2026 Football Thread Formula 1 Discussion MLB/Baseball 2023 TeamLiquid Health and Fitness Initiative For 2023
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread High temperatures on bridge(s)
TL Community
The Automated Ban List TeamLiquid Team Shirt On Sale
Blogs
Collective Intelligence: Tea…
TrAiDoS
A very expensive lesson on ma…
Garnet
hello world
radishsoup
Lemme tell you a thing o…
JoinTheRain
RTS Design in Hypercoven
a11
Evil Gacha Games and the…
ffswowsucks
INDEPENDIENTE LA CTM
XenOsky
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1109 users

Math Puzzle #3 - Page 2

Blogs > mieda
Post a Reply
Prev 1 2 3 Next All
AlienAlias
Profile Joined June 2009
United States324 Posts
September 10 2010 21:35 GMT
#21
I don't really understand the question ._.

all that comes to my mind is let f(x) = x, let g(x) = x (thus, all f(Q) = g(Q)), then f(x) = g(ax + b) for a = 1, b = 0.
mieda
Profile Blog Joined February 2010
United States85 Posts
September 10 2010 21:37 GMT
#22
On September 11 2010 06:35 AlienAlias wrote:
I don't really understand the question ._.

all that comes to my mind is let f(x) = x, let g(x) = x (thus, all f(Q) = g(Q)), then f(x) = g(ax + b) for a = 1, b = 0.


The question is that for *any* two polynomials f,g with rational coefficients satisfying f(Q) = g(Q), there exists some rational constants a,b such that f(x) = g(ax + b).

You've only considered one particular case of f(x) = x and g(x) = x. That's one out of infinitely many f,g satisfying the conditions of the problem.
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 21:52:35
September 10 2010 21:47 GMT
#23
On September 11 2010 06:29 naptiem wrote:
Here's an attempt for any field, F:

+ Show Spoiler +

Since f(F)=g(F), g(F) includes f(x) and there must be an element s of F where g(s)=f(x).

Rewrite s in the form ax+b for some a,b in F:

If x = 0, let b = s and a be any number in F.
Then ax+b = a 0 + s = s.

If x is not 0, let a = x^-1, the multiplicative inverse of x in F, and b = s - 1.
Then ax+b = (x^-1) x + (s - 1) = 1 + (s - 1) = s.

In both cases, ax+b = s and g(ax+b) = g(s) = f(x).


Edit: Never mind, I think I misread the problem.


K. In fact, you can easily come up with counterexamples over the complex or over the reals.

The generalization I have in mind is to number fields with real embeddings, and the significant fact is the existence of a lattice L of F (F is finite extension of Q, with real embedding), i.e. L is free abelian group with rank = [F:Q], and the L sitting in F tensor_Q R, where the latter is given a topology as a vector space, is a discrete subgroup.
AlienAlias
Profile Joined June 2009
United States324 Posts
September 10 2010 21:55 GMT
#24
so basically the question is to prove that if f(x) and g(x) are polynomials (rational etc) of the same degree, there will be some a and b in which f(x) = g(ax + b)? or is there something else in this whole talk of sets and fields that I'm missing?
mieda
Profile Blog Joined February 2010
United States85 Posts
September 10 2010 21:57 GMT
#25
On September 11 2010 06:55 AlienAlias wrote:
so basically the question is to prove that if f(x) and g(x) are polynomials (rational etc) of the same degree, there will be some a and b in which f(x) = g(ax + b)? or is there something else in this whole talk of sets and fields that I'm missing?


No. The question is properly stated as it is. You're adding the assumption that deg f = deg g now, which will follow from the condition f(x) = g(ax + b) but that requires a bit of work still.
AlienAlias
Profile Joined June 2009
United States324 Posts
September 10 2010 22:03 GMT
#26
On September 11 2010 06:57 mieda wrote:
Show nested quote +
On September 11 2010 06:55 AlienAlias wrote:
so basically the question is to prove that if f(x) and g(x) are polynomials (rational etc) of the same degree, there will be some a and b in which f(x) = g(ax + b)? or is there something else in this whole talk of sets and fields that I'm missing?


No. The question is properly stated as it is. You're adding the assumption that deg f = deg g now, which will follow from the condition f(x) = g(ax + b) but that requires a bit of work still.


I'm sorry, I'm just trying to understand the original problem because I'm not exactly sure what
Suppose f(Q) = g(Q) (i.e. the sets of values of f and g on the rationals are the same).
means. In my first post, I thought this meant the same thing as f(x) = g(x), which means by law of identity they are the same function and thus the question is silly.
However, apparently it involves things by the names of 'sets' and 'embedded fields' and other things I've not heard of before, so I'm trying to see if I can simplify it to terms that I would understand. I saw an example of f(x) = x^2 and g(x) = (2x)^2 for which f(Q) = g(Q), so I figured that whole thing meant the degree was equal.
mieda
Profile Blog Joined February 2010
United States85 Posts
September 10 2010 22:11 GMT
#27
On September 11 2010 07:03 AlienAlias wrote:
Show nested quote +
On September 11 2010 06:57 mieda wrote:
On September 11 2010 06:55 AlienAlias wrote:
so basically the question is to prove that if f(x) and g(x) are polynomials (rational etc) of the same degree, there will be some a and b in which f(x) = g(ax + b)? or is there something else in this whole talk of sets and fields that I'm missing?


No. The question is properly stated as it is. You're adding the assumption that deg f = deg g now, which will follow from the condition f(x) = g(ax + b) but that requires a bit of work still.


I'm sorry, I'm just trying to understand the original problem because I'm not exactly sure what
Show nested quote +
Suppose f(Q) = g(Q) (i.e. the sets of values of f and g on the rationals are the same).
means. In my first post, I thought this meant the same thing as f(x) = g(x), which means by law of identity they are the same function and thus the question is silly.
However, apparently it involves things by the names of 'sets' and 'embedded fields' and other things I've not heard of before, so I'm trying to see if I can simplify it to terms that I would understand. I saw an example of f(x) = x^2 and g(x) = (2x)^2 for which f(Q) = g(Q), so I figured that whole thing meant the degree was equal.


I see. I'll try to clarify what f(Q) = g(Q) means.

First, f(Q) means the set of all numbers in the range of f when you restrict the domain of f on the rationals. So for example, if f(x) = x^2 then f(Q) is the *set* or collection of all numbers y such that there exists some rational number x with y = x^2. For example, 25 is in this set because 25 = 5^2. 25/36 is also in the set because 25/36 = (5/6)^2 . You take the collection of all these numbers y such that there exists some x rational with y = f(x), and that's given a notation f(Q).

Likewise g(Q) is the collection of all numbers y such that there exists (depending on y) some rational number x such that y = g(x).

So the condition f(Q) = g(Q) just says the two sets are equal. In plain terms, it says that for any rational number x, you can find a rational number y (depending on x) such that f(x) = g(y). And vice versa.
Muirhead
Profile Blog Joined October 2007
United States556 Posts
September 10 2010 22:14 GMT
#28
On September 11 2010 06:29 mieda wrote:
Show nested quote +
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


Need a lot more details, and I'm not convinced of this argument either. You're saying WLOG assume 0 as their constant terms? And then you're assuming deg f = deg g (this is true, but you didn't mention how to prove this at all). And then there's the next paragraph which doesn't seem to make much sense to me.

Enjoy your Friday anyway!


My argument works. By "being divisible by p" k times I mean that the p-adic valuation of the rational number is blah blah... I think I assumed f,g have the same degree but it doesn't affect the argument if they have different agrees.
starleague.mit.edu
Muirhead
Profile Blog Joined October 2007
United States556 Posts
September 10 2010 22:14 GMT
#29
Also my argument works for any number field :D
starleague.mit.edu
mieda
Profile Blog Joined February 2010
United States85 Posts
September 10 2010 22:16 GMT
#30
On September 11 2010 07:14 Muirhead wrote:
Show nested quote +
On September 11 2010 06:29 mieda wrote:
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


Need a lot more details, and I'm not convinced of this argument either. You're saying WLOG assume 0 as their constant terms? And then you're assuming deg f = deg g (this is true, but you didn't mention how to prove this at all). And then there's the next paragraph which doesn't seem to make much sense to me.

Enjoy your Friday anyway!


My argument works. By "being divisible by p" k times I mean that the p-adic valuation of the rational number is blah blah... I think I assumed f,g have the same degree but it doesn't affect the argument if they have different agrees.


p-adic valuation of what? How did you reduce to the relatively prime case? And what is relatively prime?
Muirhead
Profile Blog Joined October 2007
United States556 Posts
September 10 2010 22:18 GMT
#31
On September 11 2010 07:16 mieda wrote:
Show nested quote +
On September 11 2010 07:14 Muirhead wrote:
On September 11 2010 06:29 mieda wrote:
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


Need a lot more details, and I'm not convinced of this argument either. You're saying WLOG assume 0 as their constant terms? And then you're assuming deg f = deg g (this is true, but you didn't mention how to prove this at all). And then there's the next paragraph which doesn't seem to make much sense to me.

Enjoy your Friday anyway!


My argument works. By "being divisible by p" k times I mean that the p-adic valuation of the rational number is blah blah... I think I assumed f,g have the same degree but it doesn't affect the argument if they have different agrees.


p-adic valuation of what? How did you reduce to the relatively prime case? And what is relatively prime?


I'll write it up in more detail later if nobody else gets it by tonight :D. My Friday is filled with the all important and super sexy Starcraft LAN at MIT :D
starleague.mit.edu
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 22:19:31
September 10 2010 22:19 GMT
#32
On September 11 2010 07:18 Muirhead wrote:
Show nested quote +
On September 11 2010 07:16 mieda wrote:
On September 11 2010 07:14 Muirhead wrote:
On September 11 2010 06:29 mieda wrote:
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


Need a lot more details, and I'm not convinced of this argument either. You're saying WLOG assume 0 as their constant terms? And then you're assuming deg f = deg g (this is true, but you didn't mention how to prove this at all). And then there's the next paragraph which doesn't seem to make much sense to me.

Enjoy your Friday anyway!


My argument works. By "being divisible by p" k times I mean that the p-adic valuation of the rational number is blah blah... I think I assumed f,g have the same degree but it doesn't affect the argument if they have different agrees.


p-adic valuation of what? How did you reduce to the relatively prime case? And what is relatively prime?


I'll write it up in more detail later if nobody else gets it by tonight :D. My Friday is filled with the all important and super sexy Starcraft LAN at MIT :D


Becareful there, Starcraft can take up all your time even on weekdays if you're not careful I quit Harvard CSL since I was spending way too much time on ICCUP :p
Muirhead
Profile Blog Joined October 2007
United States556 Posts
September 10 2010 22:21 GMT
#33
On September 11 2010 07:19 mieda wrote:
Show nested quote +
On September 11 2010 07:18 Muirhead wrote:
On September 11 2010 07:16 mieda wrote:
On September 11 2010 07:14 Muirhead wrote:
On September 11 2010 06:29 mieda wrote:
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


Need a lot more details, and I'm not convinced of this argument either. You're saying WLOG assume 0 as their constant terms? And then you're assuming deg f = deg g (this is true, but you didn't mention how to prove this at all). And then there's the next paragraph which doesn't seem to make much sense to me.

Enjoy your Friday anyway!


My argument works. By "being divisible by p" k times I mean that the p-adic valuation of the rational number is blah blah... I think I assumed f,g have the same degree but it doesn't affect the argument if they have different agrees.


p-adic valuation of what? How did you reduce to the relatively prime case? And what is relatively prime?


I'll write it up in more detail later if nobody else gets it by tonight :D. My Friday is filled with the all important and super sexy Starcraft LAN at MIT :D


Becareful there, Starcraft can take up all your time even on weekdays if you're not careful I quit Harvard CSL since I was spending way too much time on ICCUP :p


Hm you wouldn't happen to be Arnav Tripathy, Alex Zhai, Zachary Abel, or Yi Sun would you? I imagine you at least know those people
starleague.mit.edu
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 22:49:06
September 10 2010 22:22 GMT
#34
On September 11 2010 07:21 Muirhead wrote:
Show nested quote +
On September 11 2010 07:19 mieda wrote:
On September 11 2010 07:18 Muirhead wrote:
On September 11 2010 07:16 mieda wrote:
On September 11 2010 07:14 Muirhead wrote:
On September 11 2010 06:29 mieda wrote:
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


Need a lot more details, and I'm not convinced of this argument either. You're saying WLOG assume 0 as their constant terms? And then you're assuming deg f = deg g (this is true, but you didn't mention how to prove this at all). And then there's the next paragraph which doesn't seem to make much sense to me.

Enjoy your Friday anyway!


My argument works. By "being divisible by p" k times I mean that the p-adic valuation of the rational number is blah blah... I think I assumed f,g have the same degree but it doesn't affect the argument if they have different agrees.


p-adic valuation of what? How did you reduce to the relatively prime case? And what is relatively prime?


I'll write it up in more detail later if nobody else gets it by tonight :D. My Friday is filled with the all important and super sexy Starcraft LAN at MIT :D


Becareful there, Starcraft can take up all your time even on weekdays if you're not careful I quit Harvard CSL since I was spending way too much time on ICCUP :p


Hm you wouldn't happen to be Arnav Tripathy, Alex Zhai, Zachary Abel, or Yi Sun would you? I imagine you at least know those people


I do know Zachary, met him at the math lounge. I don't know the rest.

In fact, are you taking a course at Harvard by any chance?
category
Profile Joined July 2009
United States85 Posts
September 10 2010 23:16 GMT
#35
I was wondering if it might be useful to prove that the degrees must be equal as an intermediate step. But I have no idea how to prove even that.
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-12 06:37:04
September 10 2010 23:35 GMT
#36
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


This is wrong and you should be careful there, it's a common error that a lot of students seem to make. Take f(x) = x^3 + 4x and g(x) = x^3 + x^2 - 2x. the 2-adic valuation (additive) v(4) = 2 and v(2) = 1. Here your r = 2. But v(g(2)) = 3 > 2 = r now.

Also, you seem to be proving that if f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x and g(x) = b_n x^n +b_{n-1} x^{n-1} + ... + b_1 x are of those form (no constant terms and contents of f,g are 1) and f(Q) = g(Q), then all the corresponding coefficients are +/- of each other. Here's a counterexample: Take g(x) = x^3 + x^2 - 2x as above. Then g(x+1) = x^3 + 4x^2 + 3x. But -2 and 3 have different 2-adic and 3-adic valuations, even though the images of g(x) and g(x+1) on the rationals are the same.

There are some other road blocks that I can immediately think of in just doing simple valuation calculations, so you'd better write up a detailed attempt. It most likely won't work.

As Richard likes to say, devil's always in the detail :p .

Speaking of which, I remember I was trying to show him some calculations I did with etale cohomology of some rigid analytic spaces (the method I used, as you might know was to compute combinatorially by finding some open affinoids with good reduction - well you need a semistable model also - and you can imagine how complicated it can get with spectral sequences of rapoport-zink) and I was very sure some parts were standard calculations, little did I know he caught one error and proceeded to tell me a lengthy story with "devil's in the detail" as his point. Of course this problem is nowhere as complicated as computing spectral sequences, and does admit elementary solutions, but he taught me to always be careful

Valuation calculations is the first thing one would try for this problem. I think you probably need to do a little more than simple valuation calculations, but who knows.

Edit: Rapoport is visiting Harvard at the moment. If you do algebraic geometry you should probably talk to him while he's still here ^^
KristianJS
Profile Joined October 2009
2107 Posts
September 11 2010 00:56 GMT
#37
Looks interesting, I'll have a go. Thinking geometrically seems to give some intuition and I have some vague ideas as to how the specific behaviour of polynomials can come into play, but nothing crystallized yet. Bedtime too anyway so will try again tomorrow
You need to be 100% behind someone before you can stab them in the back
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-11 01:23:37
September 11 2010 00:58 GMT
#38
On September 11 2010 09:56 KristianJS wrote:
Looks interesting, I'll have a go. Thinking geometrically seems to give some intuition and I have some vague ideas as to how the specific behaviour of polynomials can come into play, but nothing crystallized yet. Bedtime too anyway so will try again tomorrow


Great!
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-11 08:31:58
September 11 2010 08:25 GMT
#39
I just finished typing my solution to this in LaTeX, so anyone who would like to see my solution can PM me!

Edit: I'll post it tomorrow or day after tomorrow probably.
FiBsTeR
Profile Blog Joined February 2008
United States415 Posts
September 11 2010 14:16 GMT
#40
Gogogo muirhead! MIT fighting! :D

Remember me mieda? We played on iccup and east before. Do you play sc2 now?

Oh and btw it's not being able to solve problems like these that push me further and further into the less pure land of CS.
Prev 1 2 3 Next All
Please log in or register to reply.
Live Events Refresh
Next event in 8h 17m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
Nina 137
Nathanias 109
ProTech62
CosmosSc2 27
Vindicta 21
StarCraft: Brood War
Artosis 840
Hyuk 510
NaDa 34
sSak 28
Dota 2
monkeys_forever880
NeuroSwarm72
League of Legends
JimRising 841
Counter-Strike
fl0m1383
taco 101
Other Games
summit1g6438
shahzam1145
Day[9].tv323
Maynarde132
RuFF_SC220
Organizations
Other Games
gamesdonequick1728
StarCraft 2
CranKy Ducklings80
Other Games
BasetradeTV20
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 14 non-featured ]
StarCraft 2
• Mapu2
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• Ler36
Other Games
• Scarra1159
• Day9tv323
Upcoming Events
Afreeca Starleague
8h 17m
BeSt vs Alone
Queen vs Bisu
PiGosaur Monday
22h 17m
OSC
1d 14h
OSC
1d 22h
RSL Revival
2 days
Cure vs SHIN
Reynor vs Zoun
The PondCast
2 days
RSL Revival
3 days
Classic vs TriGGeR
ByuN vs Maru
Online Event
3 days
BSL Team Wars
3 days
Team Bonyth vs Team Dewalt
BSL Team Wars
3 days
[ Show More ]
RSL Revival
4 days
Maestros of the Game
4 days
ShoWTimE vs Classic
Clem vs herO
Serral vs Bunny
Reynor vs Zoun
Cosmonarchy
4 days
Bonyth vs Dewalt
[BSL 2025] Weekly
4 days
RSL Revival
5 days
Maestros of the Game
5 days
BSL Team Wars
5 days
Afreeca Starleague
6 days
Snow vs Sharp
Jaedong vs Mini
Liquipedia Results

Completed

Copa Latinoamericana 4
SEL Season 2 Championship
HCC Europe

Ongoing

BSL 20 Team Wars
KCM Race Survival 2025 Season 3
BSL 21: BSL Points
ASL Season 20
CSL 2025 AUTUMN (S18)
LASL Season 20
RSL Revival: Season 2
Maestros of the Game
Chzzk MurlocKing SC1 vs SC2 Cup #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1

Upcoming

2025 Chongqing Offline CUP
BSL Polish World Championship 2025
BSL Season 21
BSL 21 Team A
EC S1
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025
MESA Nomadic Masters Fall
Thunderpick World Champ.
CS Asia Championships 2025
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.