• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EST 19:11
CET 01:11
KST 09:11
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
RSL Revival - 2025 Season Finals Preview8RSL Season 3 - Playoffs Preview0RSL Season 3 - RO16 Groups C & D Preview0RSL Season 3 - RO16 Groups A & B Preview2TL.net Map Contest #21: Winners12
Community News
Weekly Cups (Dec 1-7): Clem doubles, Solar gets over the hump1Weekly Cups (Nov 24-30): MaxPax, Clem, herO win2BGE Stara Zagora 2026 announced15[BSL21] Ro.16 Group Stage (C->B->A->D)4Weekly Cups (Nov 17-23): Solar, MaxPax, Clem win3
StarCraft 2
General
RSL Revival - 2025 Season Finals Preview Weekly Cups (Dec 1-7): Clem doubles, Solar gets over the hump Chinese SC2 server to reopen; live all-star event in Hangzhou Maestros of the Game: Live Finals Preview (RO4) BGE Stara Zagora 2026 announced
Tourneys
RSL Offline Finals Info - Dec 13 and 14! Tenacious Turtle Tussle 2025 RSL Offline Finals Dates + Ticket Sales! Sparkling Tuna Cup - Weekly Open Tournament StarCraft2.fi 15th Anniversary Cup
Strategy
Custom Maps
Map Editor closed ?
External Content
Mutation # 504 Retribution Mutation # 503 Fowl Play Mutation # 502 Negative Reinforcement Mutation # 501 Price of Progress
Brood War
General
BGH Auto Balance -> http://bghmmr.eu/ How Rain Became ProGamer in Just 3 Months [BSL21] RO8 Bracket & Prediction Contest BW General Discussion FlaSh on: Biggest Problem With SnOw's Playstyle
Tourneys
[ASL20] Grand Finals [BSL21] RO8 - Day 2 - Sunday 21:00 CET [BSL21] RO8 - Day 1 - Saturday 21:00 CET Small VOD Thread 2.0
Strategy
Simple Questions, Simple Answers Game Theory for Starcraft Fighting Spirit mining rates Current Meta
Other Games
General Games
The 2048 Game Dawn of War IV Path of Exile Stormgate/Frost Giant Megathread Awesome Games Done Quick 2026!
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
Mafia Game Mode Feedback/Ideas Survivor II: The Amazon Sengoku Mafia TL Mafia Community Thread
Community
General
Things Aren’t Peaceful in Palestine Russo-Ukrainian War Thread US Politics Mega-thread YouTube Thread European Politico-economics QA Mega-thread
Fan Clubs
White-Ra Fan Club
Media & Entertainment
Anime Discussion Thread [Manga] One Piece Movie Discussion!
Sports
2024 - 2026 Football Thread Formula 1 Discussion
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
TL+ Announced Where to ask questions and add stream?
Blogs
How Sleep Deprivation Affect…
TrAiDoS
I decided to write a webnov…
DjKniteX
James Bond movies ranking - pa…
Topin
Thanks for the RSL
Hildegard
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1364 users

Math Puzzle #3 - Page 2

Blogs > mieda
Post a Reply
Prev 1 2 3 Next All
AlienAlias
Profile Joined June 2009
United States324 Posts
September 10 2010 21:35 GMT
#21
I don't really understand the question ._.

all that comes to my mind is let f(x) = x, let g(x) = x (thus, all f(Q) = g(Q)), then f(x) = g(ax + b) for a = 1, b = 0.
mieda
Profile Blog Joined February 2010
United States85 Posts
September 10 2010 21:37 GMT
#22
On September 11 2010 06:35 AlienAlias wrote:
I don't really understand the question ._.

all that comes to my mind is let f(x) = x, let g(x) = x (thus, all f(Q) = g(Q)), then f(x) = g(ax + b) for a = 1, b = 0.


The question is that for *any* two polynomials f,g with rational coefficients satisfying f(Q) = g(Q), there exists some rational constants a,b such that f(x) = g(ax + b).

You've only considered one particular case of f(x) = x and g(x) = x. That's one out of infinitely many f,g satisfying the conditions of the problem.
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 21:52:35
September 10 2010 21:47 GMT
#23
On September 11 2010 06:29 naptiem wrote:
Here's an attempt for any field, F:

+ Show Spoiler +

Since f(F)=g(F), g(F) includes f(x) and there must be an element s of F where g(s)=f(x).

Rewrite s in the form ax+b for some a,b in F:

If x = 0, let b = s and a be any number in F.
Then ax+b = a 0 + s = s.

If x is not 0, let a = x^-1, the multiplicative inverse of x in F, and b = s - 1.
Then ax+b = (x^-1) x + (s - 1) = 1 + (s - 1) = s.

In both cases, ax+b = s and g(ax+b) = g(s) = f(x).


Edit: Never mind, I think I misread the problem.


K. In fact, you can easily come up with counterexamples over the complex or over the reals.

The generalization I have in mind is to number fields with real embeddings, and the significant fact is the existence of a lattice L of F (F is finite extension of Q, with real embedding), i.e. L is free abelian group with rank = [F:Q], and the L sitting in F tensor_Q R, where the latter is given a topology as a vector space, is a discrete subgroup.
AlienAlias
Profile Joined June 2009
United States324 Posts
September 10 2010 21:55 GMT
#24
so basically the question is to prove that if f(x) and g(x) are polynomials (rational etc) of the same degree, there will be some a and b in which f(x) = g(ax + b)? or is there something else in this whole talk of sets and fields that I'm missing?
mieda
Profile Blog Joined February 2010
United States85 Posts
September 10 2010 21:57 GMT
#25
On September 11 2010 06:55 AlienAlias wrote:
so basically the question is to prove that if f(x) and g(x) are polynomials (rational etc) of the same degree, there will be some a and b in which f(x) = g(ax + b)? or is there something else in this whole talk of sets and fields that I'm missing?


No. The question is properly stated as it is. You're adding the assumption that deg f = deg g now, which will follow from the condition f(x) = g(ax + b) but that requires a bit of work still.
AlienAlias
Profile Joined June 2009
United States324 Posts
September 10 2010 22:03 GMT
#26
On September 11 2010 06:57 mieda wrote:
Show nested quote +
On September 11 2010 06:55 AlienAlias wrote:
so basically the question is to prove that if f(x) and g(x) are polynomials (rational etc) of the same degree, there will be some a and b in which f(x) = g(ax + b)? or is there something else in this whole talk of sets and fields that I'm missing?


No. The question is properly stated as it is. You're adding the assumption that deg f = deg g now, which will follow from the condition f(x) = g(ax + b) but that requires a bit of work still.


I'm sorry, I'm just trying to understand the original problem because I'm not exactly sure what
Suppose f(Q) = g(Q) (i.e. the sets of values of f and g on the rationals are the same).
means. In my first post, I thought this meant the same thing as f(x) = g(x), which means by law of identity they are the same function and thus the question is silly.
However, apparently it involves things by the names of 'sets' and 'embedded fields' and other things I've not heard of before, so I'm trying to see if I can simplify it to terms that I would understand. I saw an example of f(x) = x^2 and g(x) = (2x)^2 for which f(Q) = g(Q), so I figured that whole thing meant the degree was equal.
mieda
Profile Blog Joined February 2010
United States85 Posts
September 10 2010 22:11 GMT
#27
On September 11 2010 07:03 AlienAlias wrote:
Show nested quote +
On September 11 2010 06:57 mieda wrote:
On September 11 2010 06:55 AlienAlias wrote:
so basically the question is to prove that if f(x) and g(x) are polynomials (rational etc) of the same degree, there will be some a and b in which f(x) = g(ax + b)? or is there something else in this whole talk of sets and fields that I'm missing?


No. The question is properly stated as it is. You're adding the assumption that deg f = deg g now, which will follow from the condition f(x) = g(ax + b) but that requires a bit of work still.


I'm sorry, I'm just trying to understand the original problem because I'm not exactly sure what
Show nested quote +
Suppose f(Q) = g(Q) (i.e. the sets of values of f and g on the rationals are the same).
means. In my first post, I thought this meant the same thing as f(x) = g(x), which means by law of identity they are the same function and thus the question is silly.
However, apparently it involves things by the names of 'sets' and 'embedded fields' and other things I've not heard of before, so I'm trying to see if I can simplify it to terms that I would understand. I saw an example of f(x) = x^2 and g(x) = (2x)^2 for which f(Q) = g(Q), so I figured that whole thing meant the degree was equal.


I see. I'll try to clarify what f(Q) = g(Q) means.

First, f(Q) means the set of all numbers in the range of f when you restrict the domain of f on the rationals. So for example, if f(x) = x^2 then f(Q) is the *set* or collection of all numbers y such that there exists some rational number x with y = x^2. For example, 25 is in this set because 25 = 5^2. 25/36 is also in the set because 25/36 = (5/6)^2 . You take the collection of all these numbers y such that there exists some x rational with y = f(x), and that's given a notation f(Q).

Likewise g(Q) is the collection of all numbers y such that there exists (depending on y) some rational number x such that y = g(x).

So the condition f(Q) = g(Q) just says the two sets are equal. In plain terms, it says that for any rational number x, you can find a rational number y (depending on x) such that f(x) = g(y). And vice versa.
Muirhead
Profile Blog Joined October 2007
United States556 Posts
September 10 2010 22:14 GMT
#28
On September 11 2010 06:29 mieda wrote:
Show nested quote +
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


Need a lot more details, and I'm not convinced of this argument either. You're saying WLOG assume 0 as their constant terms? And then you're assuming deg f = deg g (this is true, but you didn't mention how to prove this at all). And then there's the next paragraph which doesn't seem to make much sense to me.

Enjoy your Friday anyway!


My argument works. By "being divisible by p" k times I mean that the p-adic valuation of the rational number is blah blah... I think I assumed f,g have the same degree but it doesn't affect the argument if they have different agrees.
starleague.mit.edu
Muirhead
Profile Blog Joined October 2007
United States556 Posts
September 10 2010 22:14 GMT
#29
Also my argument works for any number field :D
starleague.mit.edu
mieda
Profile Blog Joined February 2010
United States85 Posts
September 10 2010 22:16 GMT
#30
On September 11 2010 07:14 Muirhead wrote:
Show nested quote +
On September 11 2010 06:29 mieda wrote:
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


Need a lot more details, and I'm not convinced of this argument either. You're saying WLOG assume 0 as their constant terms? And then you're assuming deg f = deg g (this is true, but you didn't mention how to prove this at all). And then there's the next paragraph which doesn't seem to make much sense to me.

Enjoy your Friday anyway!


My argument works. By "being divisible by p" k times I mean that the p-adic valuation of the rational number is blah blah... I think I assumed f,g have the same degree but it doesn't affect the argument if they have different agrees.


p-adic valuation of what? How did you reduce to the relatively prime case? And what is relatively prime?
Muirhead
Profile Blog Joined October 2007
United States556 Posts
September 10 2010 22:18 GMT
#31
On September 11 2010 07:16 mieda wrote:
Show nested quote +
On September 11 2010 07:14 Muirhead wrote:
On September 11 2010 06:29 mieda wrote:
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


Need a lot more details, and I'm not convinced of this argument either. You're saying WLOG assume 0 as their constant terms? And then you're assuming deg f = deg g (this is true, but you didn't mention how to prove this at all). And then there's the next paragraph which doesn't seem to make much sense to me.

Enjoy your Friday anyway!


My argument works. By "being divisible by p" k times I mean that the p-adic valuation of the rational number is blah blah... I think I assumed f,g have the same degree but it doesn't affect the argument if they have different agrees.


p-adic valuation of what? How did you reduce to the relatively prime case? And what is relatively prime?


I'll write it up in more detail later if nobody else gets it by tonight :D. My Friday is filled with the all important and super sexy Starcraft LAN at MIT :D
starleague.mit.edu
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 22:19:31
September 10 2010 22:19 GMT
#32
On September 11 2010 07:18 Muirhead wrote:
Show nested quote +
On September 11 2010 07:16 mieda wrote:
On September 11 2010 07:14 Muirhead wrote:
On September 11 2010 06:29 mieda wrote:
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


Need a lot more details, and I'm not convinced of this argument either. You're saying WLOG assume 0 as their constant terms? And then you're assuming deg f = deg g (this is true, but you didn't mention how to prove this at all). And then there's the next paragraph which doesn't seem to make much sense to me.

Enjoy your Friday anyway!


My argument works. By "being divisible by p" k times I mean that the p-adic valuation of the rational number is blah blah... I think I assumed f,g have the same degree but it doesn't affect the argument if they have different agrees.


p-adic valuation of what? How did you reduce to the relatively prime case? And what is relatively prime?


I'll write it up in more detail later if nobody else gets it by tonight :D. My Friday is filled with the all important and super sexy Starcraft LAN at MIT :D


Becareful there, Starcraft can take up all your time even on weekdays if you're not careful I quit Harvard CSL since I was spending way too much time on ICCUP :p
Muirhead
Profile Blog Joined October 2007
United States556 Posts
September 10 2010 22:21 GMT
#33
On September 11 2010 07:19 mieda wrote:
Show nested quote +
On September 11 2010 07:18 Muirhead wrote:
On September 11 2010 07:16 mieda wrote:
On September 11 2010 07:14 Muirhead wrote:
On September 11 2010 06:29 mieda wrote:
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


Need a lot more details, and I'm not convinced of this argument either. You're saying WLOG assume 0 as their constant terms? And then you're assuming deg f = deg g (this is true, but you didn't mention how to prove this at all). And then there's the next paragraph which doesn't seem to make much sense to me.

Enjoy your Friday anyway!


My argument works. By "being divisible by p" k times I mean that the p-adic valuation of the rational number is blah blah... I think I assumed f,g have the same degree but it doesn't affect the argument if they have different agrees.


p-adic valuation of what? How did you reduce to the relatively prime case? And what is relatively prime?


I'll write it up in more detail later if nobody else gets it by tonight :D. My Friday is filled with the all important and super sexy Starcraft LAN at MIT :D


Becareful there, Starcraft can take up all your time even on weekdays if you're not careful I quit Harvard CSL since I was spending way too much time on ICCUP :p


Hm you wouldn't happen to be Arnav Tripathy, Alex Zhai, Zachary Abel, or Yi Sun would you? I imagine you at least know those people
starleague.mit.edu
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 22:49:06
September 10 2010 22:22 GMT
#34
On September 11 2010 07:21 Muirhead wrote:
Show nested quote +
On September 11 2010 07:19 mieda wrote:
On September 11 2010 07:18 Muirhead wrote:
On September 11 2010 07:16 mieda wrote:
On September 11 2010 07:14 Muirhead wrote:
On September 11 2010 06:29 mieda wrote:
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


Need a lot more details, and I'm not convinced of this argument either. You're saying WLOG assume 0 as their constant terms? And then you're assuming deg f = deg g (this is true, but you didn't mention how to prove this at all). And then there's the next paragraph which doesn't seem to make much sense to me.

Enjoy your Friday anyway!


My argument works. By "being divisible by p" k times I mean that the p-adic valuation of the rational number is blah blah... I think I assumed f,g have the same degree but it doesn't affect the argument if they have different agrees.


p-adic valuation of what? How did you reduce to the relatively prime case? And what is relatively prime?


I'll write it up in more detail later if nobody else gets it by tonight :D. My Friday is filled with the all important and super sexy Starcraft LAN at MIT :D


Becareful there, Starcraft can take up all your time even on weekdays if you're not careful I quit Harvard CSL since I was spending way too much time on ICCUP :p


Hm you wouldn't happen to be Arnav Tripathy, Alex Zhai, Zachary Abel, or Yi Sun would you? I imagine you at least know those people


I do know Zachary, met him at the math lounge. I don't know the rest.

In fact, are you taking a course at Harvard by any chance?
category
Profile Joined July 2009
United States85 Posts
September 10 2010 23:16 GMT
#35
I was wondering if it might be useful to prove that the degrees must be equal as an intermediate step. But I have no idea how to prove even that.
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-12 06:37:04
September 10 2010 23:35 GMT
#36
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


This is wrong and you should be careful there, it's a common error that a lot of students seem to make. Take f(x) = x^3 + 4x and g(x) = x^3 + x^2 - 2x. the 2-adic valuation (additive) v(4) = 2 and v(2) = 1. Here your r = 2. But v(g(2)) = 3 > 2 = r now.

Also, you seem to be proving that if f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x and g(x) = b_n x^n +b_{n-1} x^{n-1} + ... + b_1 x are of those form (no constant terms and contents of f,g are 1) and f(Q) = g(Q), then all the corresponding coefficients are +/- of each other. Here's a counterexample: Take g(x) = x^3 + x^2 - 2x as above. Then g(x+1) = x^3 + 4x^2 + 3x. But -2 and 3 have different 2-adic and 3-adic valuations, even though the images of g(x) and g(x+1) on the rationals are the same.

There are some other road blocks that I can immediately think of in just doing simple valuation calculations, so you'd better write up a detailed attempt. It most likely won't work.

As Richard likes to say, devil's always in the detail :p .

Speaking of which, I remember I was trying to show him some calculations I did with etale cohomology of some rigid analytic spaces (the method I used, as you might know was to compute combinatorially by finding some open affinoids with good reduction - well you need a semistable model also - and you can imagine how complicated it can get with spectral sequences of rapoport-zink) and I was very sure some parts were standard calculations, little did I know he caught one error and proceeded to tell me a lengthy story with "devil's in the detail" as his point. Of course this problem is nowhere as complicated as computing spectral sequences, and does admit elementary solutions, but he taught me to always be careful

Valuation calculations is the first thing one would try for this problem. I think you probably need to do a little more than simple valuation calculations, but who knows.

Edit: Rapoport is visiting Harvard at the moment. If you do algebraic geometry you should probably talk to him while he's still here ^^
KristianJS
Profile Joined October 2009
2107 Posts
September 11 2010 00:56 GMT
#37
Looks interesting, I'll have a go. Thinking geometrically seems to give some intuition and I have some vague ideas as to how the specific behaviour of polynomials can come into play, but nothing crystallized yet. Bedtime too anyway so will try again tomorrow
You need to be 100% behind someone before you can stab them in the back
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-11 01:23:37
September 11 2010 00:58 GMT
#38
On September 11 2010 09:56 KristianJS wrote:
Looks interesting, I'll have a go. Thinking geometrically seems to give some intuition and I have some vague ideas as to how the specific behaviour of polynomials can come into play, but nothing crystallized yet. Bedtime too anyway so will try again tomorrow


Great!
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-11 08:31:58
September 11 2010 08:25 GMT
#39
I just finished typing my solution to this in LaTeX, so anyone who would like to see my solution can PM me!

Edit: I'll post it tomorrow or day after tomorrow probably.
FiBsTeR
Profile Blog Joined February 2008
United States415 Posts
September 11 2010 14:16 GMT
#40
Gogogo muirhead! MIT fighting! :D

Remember me mieda? We played on iccup and east before. Do you play sc2 now?

Oh and btw it's not being able to solve problems like these that push me further and further into the less pure land of CS.
Prev 1 2 3 Next All
Please log in or register to reply.
Live Events Refresh
The PiG Daily
21:30
Best Games of SC
Maru vs Reynor
TBD vs MaxPax
Maru vs SHIN
MaxPax vs Maru
LiquipediaDiscussion
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
PiGStarcraft510
StarCraft: Brood War
Britney 9476
Shuttle 467
NaDa 35
Dota 2
syndereN743
League of Legends
C9.Mang0325
Counter-Strike
minikerr27
Super Smash Bros
Mew2King70
Heroes of the Storm
Khaldor251
Other Games
Grubby3418
summit1g657
JimRising 272
hungrybox184
Maynarde95
Fuzer 69
Organizations
Other Games
gamesdonequick1822
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 15 non-featured ]
StarCraft 2
• Hupsaiya 117
• musti20045 32
• Dystopia_ 2
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
League of Legends
• Doublelift4775
Other Games
• imaqtpie2761
Upcoming Events
Replay Cast
8h 49m
Wardi Open
11h 49m
Monday Night Weeklies
16h 49m
Sparkling Tuna Cup
1d 9h
OSC
2 days
YoungYakov vs Mixu
ForJumy vs TBD
Percival vs TBD
Shameless vs TBD
Replay Cast
2 days
The PondCast
3 days
OSC
4 days
CranKy Ducklings
5 days
SC Evo League
5 days
[ Show More ]
BSL 21
5 days
Sparkling Tuna Cup
6 days
BSL 21
6 days
Liquipedia Results

Completed

Acropolis #4 - TS3
RSL Offline Finals
Kuram Kup

Ongoing

C-Race Season 1
IPSL Winter 2025-26
KCM Race Survival 2025 Season 4
YSL S2
BSL Season 21
Slon Tour Season 2
WardiTV 2025
META Madness #9
SL Budapest Major 2025
ESL Impact League Season 8
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025
Thunderpick World Champ.
CS Asia Championships 2025
ESL Pro League S22

Upcoming

CSL 2025 WINTER (S19)
BSL 21 Non-Korean Championship
Acropolis #4
IPSL Spring 2026
Bellum Gens Elite Stara Zagora 2026
HSC XXVIII
Big Gabe Cup #3
PGL Cluj-Napoca 2026
IEM Kraków 2026
BLAST Bounty Winter 2026
BLAST Bounty Winter Qual
eXTREMESLAND 2025
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.