• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 06:02
CEST 12:02
KST 19:02
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
RSL Season 1 - Final Week6[ASL19] Finals Recap: Standing Tall12HomeStory Cup 27 - Info & Preview18Classic wins Code S Season 2 (2025)16Code S RO4 & Finals Preview: herO, Rogue, Classic, GuMiho0
Community News
Esports World Cup 2025 - Brackets Revealed10Weekly Cups (July 7-13): Classic continues to roll3Team TLMC #5 - Submission extension3Firefly given lifetime ban by ESIC following match-fixing investigation17$25,000 Streamerzone StarCraft Pro Series announced7
StarCraft 2
General
Weekly Cups (July 7-13): Classic continues to roll Esports World Cup 2025 - Brackets Revealed The GOAT ranking of GOAT rankings Team TLMC #5 - Submission extension Who will win EWC 2025?
Tourneys
RSL: Revival, a new crowdfunded tournament series FEL Cracov 2025 (July 27) - $8000 live event $5,100+ SEL Season 2 Championship (SC: Evo) WardiTV Mondays Sparkling Tuna Cup - Weekly Open Tournament
Strategy
How did i lose this ZvP, whats the proper response Simple Questions Simple Answers
Custom Maps
External Content
Mutation # 482 Wheel of Misfortune Mutation # 481 Fear and Lava Mutation # 480 Moths to the Flame Mutation # 479 Worn Out Welcome
Brood War
General
Flash Announces (and Retracts) Hiatus From ASL BW General Discussion BGH Auto Balance -> http://bghmmr.eu/ Starcraft in widescreen A cwal.gg Extension - Easily keep track of anyone
Tourneys
Cosmonarchy Pro Showmatches [Megathread] Daily Proleagues CSL Xiamen International Invitational [BSL20] Non-Korean Championship 4x BSL + 4x China
Strategy
Simple Questions, Simple Answers I am doing this better than progamers do.
Other Games
General Games
Path of Exile Nintendo Switch Thread Stormgate/Frost Giant Megathread CCLP - Command & Conquer League Project The PlayStation 5
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
US Politics Mega-thread Russo-Ukrainian War Thread Stop Killing Games - European Citizens Initiative Summer Games Done Quick 2025! Things Aren’t Peaceful in Palestine
Fan Clubs
SKT1 Classic Fan Club! Maru Fan Club
Media & Entertainment
Movie Discussion! [Manga] One Piece Anime Discussion Thread [\m/] Heavy Metal Thread
Sports
Formula 1 Discussion TeamLiquid Health and Fitness Initiative For 2023 2024 - 2025 Football Thread NBA General Discussion NHL Playoffs 2024
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
The Automated Ban List
Blogs
Men Take Risks, Women Win Ga…
TrAiDoS
momentary artworks from des…
tankgirl
from making sc maps to makin…
Husyelt
StarCraft improvement
iopq
Trip to the Zoo
micronesia
Customize Sidebar...

Website Feedback

Closed Threads



Active: 545 users

Math Puzzle #3 - Page 3

Blogs > mieda
Post a Reply
Prev 1 2 3 All
mieda
Profile Blog Joined February 2010
United States85 Posts
September 11 2010 14:21 GMT
#41
On September 11 2010 23:16 FiBsTeR wrote:
Gogogo muirhead! MIT fighting! :D

Remember me mieda? We played on iccup and east before. Do you play sc2 now?

Oh and btw it's not being able to solve problems like these that push me further and further into the less pure land of CS.


Hey Fibster, yea I remember you of course. We were in team "Galois" at iccup for brief time hah!

I don't play sc2 now, since my computer can't run it. But it's better that way, since I wasted too much time on iccup anyway .

Harvard CSL is all SC2 now. I guess it's the same for MIT CSL?
BottleAbuser
Profile Blog Joined December 2007
Korea (South)1888 Posts
September 11 2010 15:59 GMT
#42
So, as I understand it, we need to find a way to find the values for a and b? Proving the last statement, that they exist, is trivial.
Compilers are like boyfriends, you miss a period and they go crazy on you.
KristianJS
Profile Joined October 2009
2107 Posts
September 11 2010 16:09 GMT
#43
On September 12 2010 00:59 BottleAbuser wrote:
So, as I understand it, we need to find a way to find the values for a and b? Proving the last statement, that they exist, is trivial.


Um, that's not trivial at all, and is actually what you're asked to prove.

You need to be 100% behind someone before you can stab them in the back
BottleAbuser
Profile Blog Joined December 2007
Korea (South)1888 Posts
September 11 2010 19:21 GMT
#44
Once again I demonstrate my math illiteracy.

Someone mentioned that if the fields are the same, the polynomials of f and g can be proven to be of the same degree.

What if f(x) = x, and g(x) = x^3? The images of both functions are all reals, and they are not of the same degree.
Compilers are like boyfriends, you miss a period and they go crazy on you.
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-11 19:31:03
September 11 2010 19:30 GMT
#45
On September 12 2010 04:21 BottleAbuser wrote:
Once again I demonstrate my math illiteracy.

Someone mentioned that if the fields are the same, the polynomials of f and g can be proven to be of the same degree.

What if f(x) = x, and g(x) = x^3? The images of both functions are all reals, and they are not of the same degree.


Images over the rational numbers, my friend, over the rational numbers. And I already remarked that you can easily find counter examples over the reals or over the complex
Fly[DCT]
Profile Joined September 2010
Canada38 Posts
Last Edited: 2010-09-11 19:50:27
September 11 2010 19:49 GMT
#46
On September 12 2010 04:21 BottleAbuser wrote:
Once again I demonstrate my math illiteracy.

Someone mentioned that if the fields are the same, the polynomials of f and g can be proven to be of the same degree.

What if f(x) = x, and g(x) = x^3? The images of both functions are all reals, and they are not of the same degree.


Your choice of f and g does not satisfy the hypothesis he is given. He said f(Q) must equal to g(Q). For your f and g, they are definitely not equal.

In particular, g(Q) is smaller in your case. For example, your g(Q) does not include 2, since there is no rational number whose cube is equal to 2.


Anyways, it's a shame that I am not quite sure how to do this problem nor even understand some of the discussions (although I do have a master degree in mathematics). I have always been somewhat an analyst than an algebraist .
lalalalala
KristianJS
Profile Joined October 2009
2107 Posts
Last Edited: 2010-09-12 00:19:35
September 11 2010 21:00 GMT
#47
Quite stumped with this problem right now. The problem is just the approach to use...The only sort of strategy I've had that seems like it might possibly get anywhere is as follows:

For each rational number x, there is a rational q s.t. f(x)=g(q). If we fix some rational x_0 and restrict to a small neighbourhood in which g is injective, we can define a function h on the rationals such that for every x

g(h(x))=f(x)

Now we'd be done if we can show that h is a polynomial and deg(g)=deg(f), but I dunno if this can be done in any easy way. Showing that h is a polynomial might involve using an argument with the chain rule, but I'm not sure.

I'll think some more but I don't seem to be getting anywhere so far @_@


EDIT: Note by the way that when you restrict to a neighbourhood of x_0 you can WLOG assume that f(x_0)=g(x_0), which may help. My geometric intuition is that if you normalize like this and then look at a rational close to x_0, then f and g must vary continuously and furthermore they have to vary in more or less the same way. But this intuition is too general and is not enough to pin down the solution...
You need to be 100% behind someone before you can stab them in the back
mieda
Profile Blog Joined February 2010
United States85 Posts
September 12 2010 04:16 GMT
#48
On September 12 2010 06:00 KristianJS wrote:
Quite stumped with this problem right now. The problem is just the approach to use...The only sort of strategy I've had that seems like it might possibly get anywhere is as follows:

For each rational number x, there is a rational q s.t. f(x)=g(q). If we fix some rational x_0 and restrict to a small neighbourhood in which g is injective, we can define a function h on the rationals such that for every x

g(h(x))=f(x)

Now we'd be done if we can show that h is a polynomial and deg(g)=deg(f), but I dunno if this can be done in any easy way. Showing that h is a polynomial might involve using an argument with the chain rule, but I'm not sure.

I'll think some more but I don't seem to be getting anywhere so far @_@


EDIT: Note by the way that when you restrict to a neighbourhood of x_0 you can WLOG assume that f(x_0)=g(x_0), which may help. My geometric intuition is that if you normalize like this and then look at a rational close to x_0, then f and g must vary continuously and furthermore they have to vary in more or less the same way. But this intuition is too general and is not enough to pin down the solution...


You can look at it locally at each point, or look at what happens when x and q get very large (from f(x) = g(q)), and perhaps this might give an idea how to show deg f = deg g.
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-12 05:43:52
September 12 2010 05:43 GMT
#49
On September 12 2010 06:00 KristianJS wrote:
Quite stumped with this problem right now. The problem is just the approach to use...The only sort of strategy I've had that seems like it might possibly get anywhere is as follows:

For each rational number x, there is a rational q s.t. f(x)=g(q). If we fix some rational x_0 and restrict to a small neighbourhood in which g is injective, we can define a function h on the rationals such that for every x

g(h(x))=f(x)

Now we'd be done if we can show that h is a polynomial and deg(g)=deg(f), but I dunno if this can be done in any easy way. Showing that h is a polynomial might involve using an argument with the chain rule, but I'm not sure.

I'll think some more but I don't seem to be getting anywhere so far @_@


EDIT: Note by the way that when you restrict to a neighbourhood of x_0 you can WLOG assume that f(x_0)=g(x_0), which may help. My geometric intuition is that if you normalize like this and then look at a rational close to x_0, then f and g must vary continuously and furthermore they have to vary in more or less the same way. But this intuition is too general and is not enough to pin down the solution...


How about thinking along this line: modulus some details omitted, you can find a global function h(x) for x sufficiently large, so that g(h(x)) = f(x) (as you have written). Clearly |h(x)| -> infinity as x -> infinity. Assume for now h(x) > 0 for x sufficiently large, and start going through integer values of x as x -> infinity. The rational root theorem guarantees that h(x) will always lie in some fixed discrete subgroup of Q (in fact (1/a)*Z where a is the leading coefficient of g).
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-12 15:10:32
September 12 2010 14:46 GMT
#50
Solution

The idea is that (mod the full details) there's a fixed discrete subgroup L of Q such that for any integer x, the rational solutions, viewed in y, of g(y) = f(x) are all in L. To extract the behavior of y as x varies, and compare the coefficients at the same time, i.e. the growth rates, you can consider expressions of the form g(y') - g(y) = f(x+1) - f(x) where y' is the corresponding rational number such that g(y') = f(x+1). By mean value theorem (don't quite need this, since f,g are polynomials so one can potentially do all the computations by algebra) the expression extracts out y' - y in terms of f'(x) and g'(y) roughly, and this gives a good comparison of y as x varies. This is the idea, and I do some computations to show that this works.

Also, simple valuation calculations (plug in this, plug in that rational number, compare the p-adic valuations) don't really seem to get anywhere, as I give plenty of counter examples to the claims of one of the posters above.
KristianJS
Profile Joined October 2009
2107 Posts
September 12 2010 20:31 GMT
#51
I have to admit that the solution to this problem eluded me. I was probably a bit too reluctant to actually start manipulating polynomial expressions and looking for too slick a proof. A nice problem though!
You need to be 100% behind someone before you can stab them in the back
gyth
Profile Blog Joined September 2009
657 Posts
September 12 2010 21:35 GMT
#52
So, given that f(x) and g(y) have congruent ranges, prove that they are linear transformations of each other???

Take f(x) = x^3 + 4x and g(x) = x^3 + x^2 - 2x.

Do these functions satisfy the conditions given in the problem?
(for what values of a,b?)
The plural of anecdote is not data.
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-12 22:29:25
September 12 2010 21:58 GMT
#53
On September 13 2010 06:35 gyth wrote:
So, given that f(x) and g(y) have congruent ranges, prove that they are linear transformations of each other???


Yes, that there's an affine coordinate change, y = ax + b

Take f(x) = x^3 + 4x and g(x) = x^3 + x^2 - 2x.
Do these functions satisfy the conditions given in the problem?
(for what values of a,b?)


They don't. But that's a specific counter-example to Muirhead's claim (one of the two). What he wrote is that either v(f(x)) <= 0 or v(f(x)) >= 2, and v(g(p)) is not in that range, with p = 2, based on v(4) = 2 and v(2) = 1. Read what he wrote above. He was claiming in general that if p^r exactly divides a_1 but not b_1 then v(f(x)) <= 0 or v(f(x)) >= 2 and v(g(p)) > 1 and v(g(p)) <= 2. This example certainly has v(g(p)) = 3 though.

The other example, a better one, is g(x) = x^3 + x^2 - 2x and g(x+1) = x^3 + 4x^2 + 3x. Clearly g(x) and g(x+1) share the same image on the ratoinals, but look at the coefficients of g(x+1) and g(x). 3 and -2 have different p-adic valuations for p = 3 and p = 2. Again, read what he proposed as a solution above.

What he thought is that if the coefficients of least degree are not the same (or rather, differ by more than a multiplicative unit of Z, plus/minus 1), then you can find a prime p so that the p-adic valuations of f(x) are always within certain range, and g(p) would not fall within that range. This is *not* true. The second example is actually good enough to kill this type of argument. I left the first example there to make a point that one can write down polynomials randomly and invalidate his argument.

There are some other flaws in his argument, and one crucial flaw among them is that he's trying to prove a_i = +/- b_i for each i. Immediately, you can see something is dead off. But we like to play devil's advocate and assume that for a bit. That's still nowhere near close to proving that f(x) = g(ax + b) for some a,b. You can cook up plenty of examples very easily where f(x) never has the form g(ax + b) and yet the coefficients of f(x) are +/- of corresponding coefficients of g(x).
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-12 23:19:11
September 12 2010 22:19 GMT
#54
On September 13 2010 05:31 KristianJS wrote:
I have to admit that the solution to this problem eluded me. I was probably a bit too reluctant to actually start manipulating polynomial expressions and looking for too slick a proof. A nice problem though!


Thanks. I'm glad that you were having fun! That is the point of my starting this thread in the first place anyway. I tried to put an interesting fact/problem so more people could enjoy. Maybe I should have waited a big longer to release the solution and you could've produced a proof as well. But then again, Monday is coming up and we'll all be busy, so I felt I should release my solution today.

Maybe a short proof exists, and I have some vague ideas thinking of line bundles, but this will have to wait it seems.

Unlike IMO problems where short solutions exist and one only needs to try some limited number of techniques mixed together, this one actually I think inevitably would require a lot of technical digging if one wants to stick to elementary methods.

When I was involved in IMO back in the days (back then was still Titu coaching MO stuff. Kind of a strange guy.. but a good coach w/e) we would practice with problems from shortlist or longlist, and some of them had solutions that were quite long, really pushing one's technical mastery of the techniques (high school techniques albeit). I got this problem back then and I was proud that I was the only high schooler who could solve this problem in the black team. That didn't help the fact that I was an illegal resident and was not allowed to travel out . .
Prev 1 2 3 All
Please log in or register to reply.
Live Events Refresh
Replay Cast
10:00
Galaxy Open Cup Season 1
Liquipedia
[ Submit Event ]
Live Streams
Refresh
StarCraft: Brood War
Zeus 734
BeSt 480
firebathero 322
Light 155
sorry 88
Pusan 61
Mind 60
Shinee 53
Shine 50
sSak 45
[ Show more ]
NaDa 18
yabsab 15
Movie 9
Bale 6
PianO 0
Dota 2
XcaliburYe458
XaKoH 420
canceldota103
League of Legends
JimRising 516
Counter-Strike
Stewie2K1079
shoxiejesuss715
x6flipin311
allub207
sgares55
Super Smash Bros
Mew2King127
Other Games
singsing1255
Happy302
Fuzer 271
crisheroes253
SortOf155
DeMusliM135
Trikslyr31
Pyrionflax31
Organizations
Other Games
gamesdonequick3478
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 12 non-featured ]
StarCraft 2
• Berry_CruncH378
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• lizZardDota2174
Upcoming Events
WardiTV European League
5h 58m
ShoWTimE vs sebesdes
Percival vs NightPhoenix
Shameless vs Nicoract
Krystianer vs Scarlett
ByuN vs uThermal
Harstem vs HeRoMaRinE
PiGosaur Monday
13h 58m
uThermal 2v2 Circuit
1d 5h
Replay Cast
1d 13h
The PondCast
1d 23h
WardiTV European League
2 days
Replay Cast
2 days
Epic.LAN
3 days
CranKy Ducklings
3 days
Epic.LAN
4 days
[ Show More ]
CSO Contender
4 days
BSL20 Non-Korean Champi…
4 days
Bonyth vs Sziky
Dewalt vs Hawk
Hawk vs QiaoGege
Sziky vs Dewalt
Mihu vs Bonyth
Zhanhun vs QiaoGege
QiaoGege vs Fengzi
Sparkling Tuna Cup
4 days
Online Event
5 days
BSL20 Non-Korean Champi…
5 days
Bonyth vs Zhanhun
Dewalt vs Mihu
Hawk vs Sziky
Sziky vs QiaoGege
Mihu vs Hawk
Zhanhun vs Dewalt
Fengzi vs Bonyth
Esports World Cup
6 days
ByuN vs Astrea
Lambo vs HeRoMaRinE
Clem vs TBD
Solar vs Zoun
SHIN vs Reynor
Maru vs TriGGeR
herO vs Lancer
Cure vs ShoWTimE
Liquipedia Results

Completed

2025 ACS Season 2: Qualifier
RSL Revival: Season 1
Murky Cup #2

Ongoing

JPL Season 2
BSL 2v2 Season 3
CSL 17: 2025 SUMMER
Copa Latinoamericana 4
Jiahua Invitational
BSL20 Non-Korean Championship
Championship of Russia 2025
FISSURE Playground #1
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025
PGL Astana 2025
Asian Champions League '25
BLAST Rivals Spring 2025
MESA Nomadic Masters

Upcoming

CSL Xiamen Invitational
CSL Xiamen Invitational: ShowMatche
2025 ACS Season 2
CSLPRO Last Chance 2025
CSLPRO Chat StarLAN 3
BSL Season 21
K-Championship
RSL Revival: Season 2
SEL Season 2 Championship
uThermal 2v2 Main Event
FEL Cracov 2025
Esports World Cup 2025
Underdog Cup #2
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.