• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 12:23
CEST 18:23
KST 01:23
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
[ASL20] Ro16 Preview Pt1: Ascent8Maestros of the Game: Week 1/Play-in Preview12[ASL20] Ro24 Preview Pt2: Take-Off7[ASL20] Ro24 Preview Pt1: Runway132v2 & SC: Evo Complete: Weekend Double Feature4
Community News
Weekly Cups (Sept 1-7): MaxPax rebounds & Clem saga continues6LiuLi Cup - September 2025 Tournaments2Weekly Cups (August 25-31): Clem's Last Straw?39Weekly Cups (Aug 18-24): herO dethrones MaxPax6Maestros of The Game—$20k event w/ live finals in Paris69
StarCraft 2
General
Weekly Cups (Sept 1-7): MaxPax rebounds & Clem saga continues #1: Maru - Greatest Players of All Time Team Liquid Map Contest #21 - Presented by Monster Energy Production Quality - Maestros of the Game Vs RSL 2 Geoff 'iNcontroL' Robinson has passed away
Tourneys
Maestros of The Game—$20k event w/ live finals in Paris Sparkling Tuna Cup - Weekly Open Tournament RSL: Revival, a new crowdfunded tournament series Chzzk MurlocKing SC1 vs SC2 Cup Sea Duckling Open (Global, Bronze-Diamond)
Strategy
Custom Maps
External Content
Mutation # 490 Masters of Midnight Mutation # 489 Bannable Offense Mutation # 488 What Goes Around Mutation # 487 Think Fast
Brood War
General
FlaSh on ACS Winners being in ASL BGH Auto Balance -> http://bghmmr.eu/ ASL20 General Discussion BSL Polish World Championship 2025 20-21 September [ASL20] Ro16 Preview Pt1: Ascent
Tourneys
[ASL20] Ro16 Group A [IPSL] ISPL Season 1 Winter Qualis and Info! [Megathread] Daily Proleagues Is there English video for group selection for ASL
Strategy
Simple Questions, Simple Answers Muta micro map competition Fighting Spirit mining rates [G] Mineral Boosting
Other Games
General Games
General RTS Discussion Thread Stormgate/Frost Giant Megathread Nintendo Switch Thread Path of Exile Warcraft III: The Frozen Throne
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
Things Aren’t Peaceful in Palestine US Politics Mega-thread The Games Industry And ATVI UK Politics Mega-thread Russo-Ukrainian War Thread
Fan Clubs
The Happy Fan Club!
Media & Entertainment
[Manga] One Piece Anime Discussion Thread Movie Discussion! [\m/] Heavy Metal Thread
Sports
Formula 1 Discussion MLB/Baseball 2023 2024 - 2026 Football Thread TeamLiquid Health and Fitness Initiative For 2023
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread High temperatures on bridge(s)
TL Community
The Automated Ban List TeamLiquid Team Shirt On Sale
Blogs
Collective Intelligence: Tea…
TrAiDoS
A very expensive lesson on ma…
Garnet
hello world
radishsoup
Lemme tell you a thing o…
JoinTheRain
RTS Design in Hypercoven
a11
Evil Gacha Games and the…
ffswowsucks
INDEPENDIENTE LA CTM
XenOsky
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1212 users

Math Puzzle #3 - Page 3

Blogs > mieda
Post a Reply
Prev 1 2 3 All
mieda
Profile Blog Joined February 2010
United States85 Posts
September 11 2010 14:21 GMT
#41
On September 11 2010 23:16 FiBsTeR wrote:
Gogogo muirhead! MIT fighting! :D

Remember me mieda? We played on iccup and east before. Do you play sc2 now?

Oh and btw it's not being able to solve problems like these that push me further and further into the less pure land of CS.


Hey Fibster, yea I remember you of course. We were in team "Galois" at iccup for brief time hah!

I don't play sc2 now, since my computer can't run it. But it's better that way, since I wasted too much time on iccup anyway .

Harvard CSL is all SC2 now. I guess it's the same for MIT CSL?
BottleAbuser
Profile Blog Joined December 2007
Korea (South)1888 Posts
September 11 2010 15:59 GMT
#42
So, as I understand it, we need to find a way to find the values for a and b? Proving the last statement, that they exist, is trivial.
Compilers are like boyfriends, you miss a period and they go crazy on you.
KristianJS
Profile Joined October 2009
2107 Posts
September 11 2010 16:09 GMT
#43
On September 12 2010 00:59 BottleAbuser wrote:
So, as I understand it, we need to find a way to find the values for a and b? Proving the last statement, that they exist, is trivial.


Um, that's not trivial at all, and is actually what you're asked to prove.

You need to be 100% behind someone before you can stab them in the back
BottleAbuser
Profile Blog Joined December 2007
Korea (South)1888 Posts
September 11 2010 19:21 GMT
#44
Once again I demonstrate my math illiteracy.

Someone mentioned that if the fields are the same, the polynomials of f and g can be proven to be of the same degree.

What if f(x) = x, and g(x) = x^3? The images of both functions are all reals, and they are not of the same degree.
Compilers are like boyfriends, you miss a period and they go crazy on you.
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-11 19:31:03
September 11 2010 19:30 GMT
#45
On September 12 2010 04:21 BottleAbuser wrote:
Once again I demonstrate my math illiteracy.

Someone mentioned that if the fields are the same, the polynomials of f and g can be proven to be of the same degree.

What if f(x) = x, and g(x) = x^3? The images of both functions are all reals, and they are not of the same degree.


Images over the rational numbers, my friend, over the rational numbers. And I already remarked that you can easily find counter examples over the reals or over the complex
Fly[DCT]
Profile Joined September 2010
Canada38 Posts
Last Edited: 2010-09-11 19:50:27
September 11 2010 19:49 GMT
#46
On September 12 2010 04:21 BottleAbuser wrote:
Once again I demonstrate my math illiteracy.

Someone mentioned that if the fields are the same, the polynomials of f and g can be proven to be of the same degree.

What if f(x) = x, and g(x) = x^3? The images of both functions are all reals, and they are not of the same degree.


Your choice of f and g does not satisfy the hypothesis he is given. He said f(Q) must equal to g(Q). For your f and g, they are definitely not equal.

In particular, g(Q) is smaller in your case. For example, your g(Q) does not include 2, since there is no rational number whose cube is equal to 2.


Anyways, it's a shame that I am not quite sure how to do this problem nor even understand some of the discussions (although I do have a master degree in mathematics). I have always been somewhat an analyst than an algebraist .
lalalalala
KristianJS
Profile Joined October 2009
2107 Posts
Last Edited: 2010-09-12 00:19:35
September 11 2010 21:00 GMT
#47
Quite stumped with this problem right now. The problem is just the approach to use...The only sort of strategy I've had that seems like it might possibly get anywhere is as follows:

For each rational number x, there is a rational q s.t. f(x)=g(q). If we fix some rational x_0 and restrict to a small neighbourhood in which g is injective, we can define a function h on the rationals such that for every x

g(h(x))=f(x)

Now we'd be done if we can show that h is a polynomial and deg(g)=deg(f), but I dunno if this can be done in any easy way. Showing that h is a polynomial might involve using an argument with the chain rule, but I'm not sure.

I'll think some more but I don't seem to be getting anywhere so far @_@


EDIT: Note by the way that when you restrict to a neighbourhood of x_0 you can WLOG assume that f(x_0)=g(x_0), which may help. My geometric intuition is that if you normalize like this and then look at a rational close to x_0, then f and g must vary continuously and furthermore they have to vary in more or less the same way. But this intuition is too general and is not enough to pin down the solution...
You need to be 100% behind someone before you can stab them in the back
mieda
Profile Blog Joined February 2010
United States85 Posts
September 12 2010 04:16 GMT
#48
On September 12 2010 06:00 KristianJS wrote:
Quite stumped with this problem right now. The problem is just the approach to use...The only sort of strategy I've had that seems like it might possibly get anywhere is as follows:

For each rational number x, there is a rational q s.t. f(x)=g(q). If we fix some rational x_0 and restrict to a small neighbourhood in which g is injective, we can define a function h on the rationals such that for every x

g(h(x))=f(x)

Now we'd be done if we can show that h is a polynomial and deg(g)=deg(f), but I dunno if this can be done in any easy way. Showing that h is a polynomial might involve using an argument with the chain rule, but I'm not sure.

I'll think some more but I don't seem to be getting anywhere so far @_@


EDIT: Note by the way that when you restrict to a neighbourhood of x_0 you can WLOG assume that f(x_0)=g(x_0), which may help. My geometric intuition is that if you normalize like this and then look at a rational close to x_0, then f and g must vary continuously and furthermore they have to vary in more or less the same way. But this intuition is too general and is not enough to pin down the solution...


You can look at it locally at each point, or look at what happens when x and q get very large (from f(x) = g(q)), and perhaps this might give an idea how to show deg f = deg g.
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-12 05:43:52
September 12 2010 05:43 GMT
#49
On September 12 2010 06:00 KristianJS wrote:
Quite stumped with this problem right now. The problem is just the approach to use...The only sort of strategy I've had that seems like it might possibly get anywhere is as follows:

For each rational number x, there is a rational q s.t. f(x)=g(q). If we fix some rational x_0 and restrict to a small neighbourhood in which g is injective, we can define a function h on the rationals such that for every x

g(h(x))=f(x)

Now we'd be done if we can show that h is a polynomial and deg(g)=deg(f), but I dunno if this can be done in any easy way. Showing that h is a polynomial might involve using an argument with the chain rule, but I'm not sure.

I'll think some more but I don't seem to be getting anywhere so far @_@


EDIT: Note by the way that when you restrict to a neighbourhood of x_0 you can WLOG assume that f(x_0)=g(x_0), which may help. My geometric intuition is that if you normalize like this and then look at a rational close to x_0, then f and g must vary continuously and furthermore they have to vary in more or less the same way. But this intuition is too general and is not enough to pin down the solution...


How about thinking along this line: modulus some details omitted, you can find a global function h(x) for x sufficiently large, so that g(h(x)) = f(x) (as you have written). Clearly |h(x)| -> infinity as x -> infinity. Assume for now h(x) > 0 for x sufficiently large, and start going through integer values of x as x -> infinity. The rational root theorem guarantees that h(x) will always lie in some fixed discrete subgroup of Q (in fact (1/a)*Z where a is the leading coefficient of g).
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-12 15:10:32
September 12 2010 14:46 GMT
#50
Solution

The idea is that (mod the full details) there's a fixed discrete subgroup L of Q such that for any integer x, the rational solutions, viewed in y, of g(y) = f(x) are all in L. To extract the behavior of y as x varies, and compare the coefficients at the same time, i.e. the growth rates, you can consider expressions of the form g(y') - g(y) = f(x+1) - f(x) where y' is the corresponding rational number such that g(y') = f(x+1). By mean value theorem (don't quite need this, since f,g are polynomials so one can potentially do all the computations by algebra) the expression extracts out y' - y in terms of f'(x) and g'(y) roughly, and this gives a good comparison of y as x varies. This is the idea, and I do some computations to show that this works.

Also, simple valuation calculations (plug in this, plug in that rational number, compare the p-adic valuations) don't really seem to get anywhere, as I give plenty of counter examples to the claims of one of the posters above.
KristianJS
Profile Joined October 2009
2107 Posts
September 12 2010 20:31 GMT
#51
I have to admit that the solution to this problem eluded me. I was probably a bit too reluctant to actually start manipulating polynomial expressions and looking for too slick a proof. A nice problem though!
You need to be 100% behind someone before you can stab them in the back
gyth
Profile Blog Joined September 2009
657 Posts
September 12 2010 21:35 GMT
#52
So, given that f(x) and g(y) have congruent ranges, prove that they are linear transformations of each other???

Take f(x) = x^3 + 4x and g(x) = x^3 + x^2 - 2x.

Do these functions satisfy the conditions given in the problem?
(for what values of a,b?)
The plural of anecdote is not data.
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-12 22:29:25
September 12 2010 21:58 GMT
#53
On September 13 2010 06:35 gyth wrote:
So, given that f(x) and g(y) have congruent ranges, prove that they are linear transformations of each other???


Yes, that there's an affine coordinate change, y = ax + b

Take f(x) = x^3 + 4x and g(x) = x^3 + x^2 - 2x.
Do these functions satisfy the conditions given in the problem?
(for what values of a,b?)


They don't. But that's a specific counter-example to Muirhead's claim (one of the two). What he wrote is that either v(f(x)) <= 0 or v(f(x)) >= 2, and v(g(p)) is not in that range, with p = 2, based on v(4) = 2 and v(2) = 1. Read what he wrote above. He was claiming in general that if p^r exactly divides a_1 but not b_1 then v(f(x)) <= 0 or v(f(x)) >= 2 and v(g(p)) > 1 and v(g(p)) <= 2. This example certainly has v(g(p)) = 3 though.

The other example, a better one, is g(x) = x^3 + x^2 - 2x and g(x+1) = x^3 + 4x^2 + 3x. Clearly g(x) and g(x+1) share the same image on the ratoinals, but look at the coefficients of g(x+1) and g(x). 3 and -2 have different p-adic valuations for p = 3 and p = 2. Again, read what he proposed as a solution above.

What he thought is that if the coefficients of least degree are not the same (or rather, differ by more than a multiplicative unit of Z, plus/minus 1), then you can find a prime p so that the p-adic valuations of f(x) are always within certain range, and g(p) would not fall within that range. This is *not* true. The second example is actually good enough to kill this type of argument. I left the first example there to make a point that one can write down polynomials randomly and invalidate his argument.

There are some other flaws in his argument, and one crucial flaw among them is that he's trying to prove a_i = +/- b_i for each i. Immediately, you can see something is dead off. But we like to play devil's advocate and assume that for a bit. That's still nowhere near close to proving that f(x) = g(ax + b) for some a,b. You can cook up plenty of examples very easily where f(x) never has the form g(ax + b) and yet the coefficients of f(x) are +/- of corresponding coefficients of g(x).
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-12 23:19:11
September 12 2010 22:19 GMT
#54
On September 13 2010 05:31 KristianJS wrote:
I have to admit that the solution to this problem eluded me. I was probably a bit too reluctant to actually start manipulating polynomial expressions and looking for too slick a proof. A nice problem though!


Thanks. I'm glad that you were having fun! That is the point of my starting this thread in the first place anyway. I tried to put an interesting fact/problem so more people could enjoy. Maybe I should have waited a big longer to release the solution and you could've produced a proof as well. But then again, Monday is coming up and we'll all be busy, so I felt I should release my solution today.

Maybe a short proof exists, and I have some vague ideas thinking of line bundles, but this will have to wait it seems.

Unlike IMO problems where short solutions exist and one only needs to try some limited number of techniques mixed together, this one actually I think inevitably would require a lot of technical digging if one wants to stick to elementary methods.

When I was involved in IMO back in the days (back then was still Titu coaching MO stuff. Kind of a strange guy.. but a good coach w/e) we would practice with problems from shortlist or longlist, and some of them had solutions that were quite long, really pushing one's technical mastery of the techniques (high school techniques albeit). I got this problem back then and I was proud that I was the only high schooler who could solve this problem in the black team. That didn't help the fact that I was an illegal resident and was not allowed to travel out . .
Prev 1 2 3 All
Please log in or register to reply.
Live Events Refresh
Monday Night Weeklies
16:00
MNW 22
SteadfastSC367
TKL 152
IndyStarCraft 92
BRAT_OK 48
LiquipediaDiscussion
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
mouzHeroMarine 437
SteadfastSC 352
TKL 149
mcanning 96
IndyStarCraft 76
BRAT_OK 48
UpATreeSC 28
MindelVK 7
StarCraft: Brood War
Calm 8220
Flash 2158
Jaedong 1026
Mini 433
Light 378
hero 330
firebathero 326
Hyuk 288
Soma 216
sSak 201
[ Show more ]
ggaemo 120
Snow 112
Dewaltoss 80
Sharp 61
sorry 44
soO 43
Hyun 42
sas.Sziky 38
Yoon 34
Rock 25
Free 23
Terrorterran 17
ajuk12(nOOB) 16
JYJ16
Hm[arnc] 15
scan(afreeca) 14
Noble 10
Britney 0
Dota 2
Gorgc9537
qojqva3761
XcaliburYe150
Other Games
singsing1786
B2W.Neo960
hiko926
FrodaN813
Lowko334
ceh9286
Beastyqt270
Hui .265
ArmadaUGS120
QueenE116
Khaldor113
SortOf71
KnowMe61
Organizations
Other Games
gamesdonequick1195
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 16 non-featured ]
StarCraft 2
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• FirePhoenix15
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• WagamamaTV617
League of Legends
• Nemesis1668
• Jankos1525
• TFBlade599
Other Games
• Shiphtur330
Upcoming Events
Afreeca Starleague
17h 37m
BeSt vs Alone
Queen vs Bisu
PiGosaur Monday
1d 7h
OSC
1d 23h
OSC
2 days
RSL Revival
2 days
Cure vs SHIN
Reynor vs Zoun
The PondCast
2 days
RSL Revival
3 days
Classic vs TriGGeR
ByuN vs Maru
Online Event
3 days
BSL Team Wars
4 days
Team Bonyth vs Team Dewalt
BSL Team Wars
4 days
[ Show More ]
RSL Revival
4 days
Maestros of the Game
4 days
ShoWTimE vs Classic
Clem vs herO
Serral vs Bunny
Reynor vs Zoun
Cosmonarchy
4 days
Bonyth vs Dewalt
[BSL 2025] Weekly
5 days
RSL Revival
5 days
Maestros of the Game
6 days
BSL Team Wars
6 days
Afreeca Starleague
6 days
Snow vs Sharp
Jaedong vs Mini
Liquipedia Results

Completed

Copa Latinoamericana 4
SEL Season 2 Championship
HCC Europe

Ongoing

BSL 20 Team Wars
KCM Race Survival 2025 Season 3
BSL 21: BSL Points
ASL Season 20
CSL 2025 AUTUMN (S18)
LASL Season 20
RSL Revival: Season 2
Maestros of the Game
Chzzk MurlocKing SC1 vs SC2 Cup #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1

Upcoming

2025 Chongqing Offline CUP
BSL Polish World Championship 2025
BSL Season 21
BSL 21 Team A
EC S1
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025
Thunderpick World Champ.
MESA Nomadic Masters Fall
CS Asia Championships 2025
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.