• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EST 04:07
CET 10:07
KST 18:07
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
RSL Revival - 2025 Season Finals Preview8RSL Season 3 - Playoffs Preview0RSL Season 3 - RO16 Groups C & D Preview0RSL Season 3 - RO16 Groups A & B Preview2TL.net Map Contest #21: Winners12
Community News
ComeBackTV's documentary on Byun's Career !9Weekly Cups (Dec 8-14): MaxPax, Clem, Cure win4Weekly Cups (Dec 1-7): Clem doubles, Solar gets over the hump1Weekly Cups (Nov 24-30): MaxPax, Clem, herO win2BGE Stara Zagora 2026 announced15
StarCraft 2
General
Micro Lags When Playing SC2? ComeBackTV's documentary on Byun's Career ! When will we find out if there are more tournament Weekly Cups (Dec 8-14): MaxPax, Clem, Cure win RSL Revival - 2025 Season Finals Preview
Tourneys
$100 Prize Pool - Winter Warp Gate Masters Showdow $5,000+ WardiTV 2025 Championship Winter Warp Gate Amateur Showdown #1 Sparkling Tuna Cup - Weekly Open Tournament RSL Offline Finals Info - Dec 13 and 14!
Strategy
Custom Maps
Map Editor closed ?
External Content
Mutation # 504 Retribution Mutation # 503 Fowl Play Mutation # 502 Negative Reinforcement Mutation # 501 Price of Progress
Brood War
General
Klaucher discontinued / in-game color settings Anyone remember me from 2000s Bnet EAST server? BGH Auto Balance -> http://bghmmr.eu/ How Rain Became ProGamer in Just 3 Months FlaSh on: Biggest Problem With SnOw's Playstyle
Tourneys
[BSL21] LB QuarterFinals - Sunday 21:00 CET Small VOD Thread 2.0 [Megathread] Daily Proleagues [BSL21] WB SEMIFINALS - Saturday 21:00 CET
Strategy
Simple Questions, Simple Answers Game Theory for Starcraft Current Meta Fighting Spirit mining rates
Other Games
General Games
Stormgate/Frost Giant Megathread General RTS Discussion Thread Nintendo Switch Thread Mechabellum PC Games Sales Thread
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
Mafia Game Mode Feedback/Ideas Survivor II: The Amazon Sengoku Mafia TL Mafia Community Thread
Community
General
Russo-Ukrainian War Thread The Games Industry And ATVI US Politics Mega-thread Things Aren’t Peaceful in Palestine YouTube Thread
Fan Clubs
White-Ra Fan Club
Media & Entertainment
Anime Discussion Thread [Manga] One Piece Movie Discussion!
Sports
2024 - 2026 Football Thread Formula 1 Discussion
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
TL+ Announced Where to ask questions and add stream?
Blogs
The (Hidden) Drug Problem in…
TrAiDoS
I decided to write a webnov…
DjKniteX
James Bond movies ranking - pa…
Topin
Thanks for the RSL
Hildegard
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1090 users

Math Puzzle #3

Blogs > mieda
Post a Reply
1 2 3 Next All
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-12 22:32:52
September 10 2010 20:12 GMT
#1
Let f,g be polynomials with rational coefficients. Suppose f(Q) = g(Q) (i.e. the sets of values of f and g on the rationals are the same). Then f(x) = g(ax + b) for some rational constants a,b.

Remark. It generalizes to number fields with real embeddings.

Note that the converse is trivial.

Solution

The idea is that (mod the full details) there's a fixed discrete subgroup L of Q such that for any integer x, the rational solutions, viewed in y, of g(y) = f(x) are all in L. To extract the behavior of y as x varies, and compare the coefficients at the same time, i.e. the growth rates, you can consider expressions of the form g(y') - g(y) = f(x+1) - f(x) where y' is the corresponding rational number such that g(y') = f(x+1). By mean value theorem (don't quite need this, since f,g are polynomials so one can potentially do all the computations by algebra) the expression extracts out y' - y in terms of f'(x) and g'(y) roughly, and this gives a good comparison of y as x varies. This is the idea, and I do some computations to show that this works.

Also, simple valuation calculations (plug in this, plug in that rational number, compare the p-adic valuations) don't really seem to get anywhere, as I give plenty of counter examples and point out the problems to the claims of one of the posters below.

*
Assault_1
Profile Joined April 2009
Canada1950 Posts
September 10 2010 20:34 GMT
#2
so whats the question?
mieda
Profile Blog Joined February 2010
United States85 Posts
September 10 2010 20:43 GMT
#3
On September 11 2010 05:34 Assault_1 wrote:
so whats the question?


Proving it.
Piege
Profile Joined October 2009
United Kingdom128 Posts
September 10 2010 20:52 GMT
#4
Would a non-math major/non-math enthusiast be able to solve this?
Never_V_ -> Fin
category
Profile Joined July 2009
United States85 Posts
September 10 2010 20:53 GMT
#5
the sets f(Q) and g(Q) are not counting multiplicity right?
category
Profile Joined July 2009
United States85 Posts
September 10 2010 20:54 GMT
#6
On September 11 2010 05:52 Piege wrote:
Would a non-math major/non-math enthusiast be able to solve this?


I don't know the solution yet but I suspect the answer to your question is no.
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 20:56:54
September 10 2010 20:55 GMT
#7
On September 11 2010 05:53 category wrote:
the sets f(Q) and g(Q) are not counting multiplicity right?


They're just sets, not really any structures on them (for ex. ramifications). For example for the functio f(x) = x^2 the set f(Q) is just the set of all squares of rational numbers. We don't care that f(x) = 0 ramifies (and elsewhere unramifies). It's just a naive set.

I wonder if that's what you meant. So yes, I think we're not counting multiplicities here, whatever you mean by that in this context. f(Q) = {y : y = f(a) for some rational a}.
category
Profile Joined July 2009
United States85 Posts
September 10 2010 20:59 GMT
#8
lol. I don't know about ramifications. i just meant, eg in the f(x^2) case, does it matter that 1 is obtained twice? but it sounds like no.

i guess for the functions f=x^2 and g=x^4, f(Q) will be larger than g(Q), because some rationals are the square of another rational but are not a fourth power?
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 21:01:28
September 10 2010 21:00 GMT
#9
On September 11 2010 05:59 category wrote:
lol. I don't know about ramifications. i just meant, eg in the f(x^2) case, does it matter that 1 is obtained twice? but it sounds like no.


Right, just count it once. So for example {1,1} = {1}.

i guess for the functions f=x^2 and g=x^4, f(Q) will be larger than g(Q), because some rationals are the square of another rational but are not a fourth power?


That's right.
Assault_1
Profile Joined April 2009
Canada1950 Posts
September 10 2010 21:04 GMT
#10
Then f(x) = g(ax + b) for some rational constants a,b.


whats the domain of x, rational or real?
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 21:12:02
September 10 2010 21:06 GMT
#11
On September 11 2010 06:04 Assault_1 wrote:
Show nested quote +
Then f(x) = g(ax + b) for some rational constants a,b.


whats the domain of x, rational or real?


any field containing the rationals. It really doesn't matter, since the condition is only imposed on f(Q) and g(Q). You don't need to "see" bigger fields containing the rationals. Any such field is infinite anyway, so if the condition f(x) = g(ax + b) holds for evaluating x on all rationals then it's identical as polynomials (in the ring Q[x]) so evaluation of x on any field containing Q likewise.
category
Profile Joined July 2009
United States85 Posts
September 10 2010 21:09 GMT
#12
On September 11 2010 06:04 Assault_1 wrote:
Show nested quote +
Then f(x) = g(ax + b) for some rational constants a,b.


whats the domain of x, rational or real?


i would say, think of it as being the rationals.

but yeah, i am finding this quite hard, though I find the result very interesting.
sputnik.theory
Profile Blog Joined July 2009
Poland449 Posts
September 10 2010 21:16 GMT
#13
I've noticed that threads like this pop up during the school year...
ITT: TL does your math homework for you
“On the night of the murder I was at home, asleep. The characters in my dream can vouch for me.”
mieda
Profile Blog Joined February 2010
United States85 Posts
September 10 2010 21:16 GMT
#14
On September 11 2010 06:16 sputnik.theory wrote:
I've noticed that threads like this pop up during the school year...
ITT: TL does your math homework for you


Rest assured, I've already solved this. It's not a homework.
Seth_
Profile Blog Joined July 2010
Belgium184 Posts
September 10 2010 21:18 GMT
#15
May I (a non-math major) ask for an example of an f(x) and g(x) polynomial for which this is true.
Fly[DCT]
Profile Joined September 2010
Canada38 Posts
Last Edited: 2010-09-10 21:25:16
September 10 2010 21:18 GMT
#16
On September 11 2010 06:04 Assault_1 wrote:
Show nested quote +
Then f(x) = g(ax + b) for some rational constants a,b.


whats the domain of x, rational or real?


I am guessing the real or complex is fine. Once we can prove this for the real it automatically implies that it's also true for the complex.

On September 11 2010 06:18 Seth_ wrote:
May I (a non-math major) ask for an example of an f(x) and g(x) polynomial for which this is true.


Sure. f(x) = x^2. g(x) = (2x)^2.
lalalalala
Muirhead
Profile Blog Joined October 2007
United States556 Posts
September 10 2010 21:25 GMT
#17
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients
starleague.mit.edu
Muirhead
Profile Blog Joined October 2007
United States556 Posts
September 10 2010 21:26 GMT
#18
Or something like that... don't have time to check everything but should be close
starleague.mit.edu
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 21:48:28
September 10 2010 21:29 GMT
#19
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


Need a lot more details, and I'm not convinced of this argument either. You're saying WLOG assume 0 as their constant terms? And then you're assuming deg f = deg g (this is true, but you didn't mention how to prove this at all). And then there's the next paragraph which doesn't seem to make much sense to me.

Enjoy your Friday anyway!
naptiem
Profile Joined July 2009
United States21 Posts
Last Edited: 2010-09-10 21:33:06
September 10 2010 21:29 GMT
#20
Here's an attempt for any field, F:

+ Show Spoiler +

Since f(F)=g(F), g(F) includes f(x) and there must be an element s of F where g(s)=f(x).

Rewrite s in the form ax+b for some a,b in F:

If x = 0, let b = s and a be any number in F.
Then ax+b = a 0 + s = s.

If x is not 0, let a = x^-1, the multiplicative inverse of x in F, and b = s - 1.
Then ax+b = (x^-1) x + (s - 1) = 1 + (s - 1) = s.

In both cases, ax+b = s and g(ax+b) = g(s) = f(x).


Edit: Never mind, I think I misread the problem.
1 2 3 Next All
Please log in or register to reply.
Live Events Refresh
Next event in 53m
[ Submit Event ]
Live Streams
Refresh
StarCraft: Brood War
Shuttle 483
Stork 370
Sharp 290
Soma 228
Rain 210
Leta 157
Dewaltoss 105
Killer 101
hero 67
Rush 64
[ Show more ]
Mong 63
yabsab 29
Movie 28
NaDa 22
JulyZerg 17
Britney 0
Dota 2
XcaliburYe372
NeuroSwarm91
League of Legends
JimRising 519
Counter-Strike
summit1g10100
oskar105
Heroes of the Storm
Khaldor210
Other Games
Mew2King67
febbydoto5
Organizations
Other Games
gamesdonequick791
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 14 non-featured ]
StarCraft 2
• Berry_CruncH345
• LUISG 15
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• WagamamaTV163
League of Legends
• Jankos469
Upcoming Events
Sparkling Tuna Cup
53m
Ladder Legends
7h 53m
BSL 21
10h 53m
StRyKeR vs TBD
Bonyth vs TBD
Replay Cast
23h 53m
Wardi Open
1d 2h
Monday Night Weeklies
1d 7h
WardiTV Invitational
3 days
Replay Cast
3 days
WardiTV Invitational
4 days
ByuN vs Solar
Clem vs Classic
Cure vs herO
Reynor vs MaxPax
Replay Cast
5 days
Liquipedia Results

Completed

Acropolis #4 - TS3
RSL Offline Finals
Kuram Kup

Ongoing

C-Race Season 1
IPSL Winter 2025-26
KCM Race Survival 2025 Season 4
YSL S2
BSL Season 21
Slon Tour Season 2
CSL Season 19: Qualifier 1
WardiTV 2025
META Madness #9
eXTREMESLAND 2025
SL Budapest Major 2025
ESL Impact League Season 8
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025
Thunderpick World Champ.
CS Asia Championships 2025
ESL Pro League S22

Upcoming

CSL Season 19: Qualifier 2
CSL 2025 WINTER (S19)
BSL 21 Non-Korean Championship
Acropolis #4
IPSL Spring 2026
Bellum Gens Elite Stara Zagora 2026
HSC XXVIII
Big Gabe Cup #3
OSC Championship Season 13
Nations Cup 2026
ESL Pro League Season 23
PGL Cluj-Napoca 2026
IEM Kraków 2026
BLAST Bounty Winter 2026
BLAST Bounty Winter Qual
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.