• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 03:00
CEST 09:00
KST 16:00
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
Maestros of the Game: Week 1/Play-in Preview12[ASL20] Ro24 Preview Pt2: Take-Off7[ASL20] Ro24 Preview Pt1: Runway132v2 & SC: Evo Complete: Weekend Double Feature4Team Liquid Map Contest #21 - Presented by Monster Energy14
Community News
LiuLi Cup - September 2025 Tournaments2Weekly Cups (August 25-31): Clem's Last Straw?39Weekly Cups (Aug 18-24): herO dethrones MaxPax6Maestros of The Game—$20k event w/ live finals in Paris54Weekly Cups (Aug 11-17): MaxPax triples again!15
StarCraft 2
General
#1: Maru - Greatest Players of All Time Team Liquid Map Contest #21 - Presented by Monster Energy Production Quality - Maestros of the Game Vs RSL 2 Geoff 'iNcontroL' Robinson has passed away Heaven's Balance Suggestions (roast me)
Tourneys
Maestros of The Game—$20k event w/ live finals in Paris RSL: Revival, a new crowdfunded tournament series Chzzk MurlocKing SC1 vs SC2 Cup Sea Duckling Open (Global, Bronze-Diamond) LiuLi Cup - September 2025 Tournaments
Strategy
Custom Maps
External Content
Mutation # 489 Bannable Offense Mutation # 488 What Goes Around Mutation # 487 Think Fast Mutation # 486 Watch the Skies
Brood War
General
The Korean Terminology Thread Pros React To: herO's Baffling Game ASL20 General Discussion BGH Auto Balance -> http://bghmmr.eu/ BW General Discussion
Tourneys
[Megathread] Daily Proleagues [IPSL] ISPL Season 1 Winter Qualis and Info! Is there English video for group selection for ASL Small VOD Thread 2.0
Strategy
Simple Questions, Simple Answers Muta micro map competition Fighting Spirit mining rates [G] Mineral Boosting
Other Games
General Games
Stormgate/Frost Giant Megathread General RTS Discussion Thread Nintendo Switch Thread Path of Exile Warcraft III: The Frozen Throne
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
Things Aren’t Peaceful in Palestine US Politics Mega-thread The Games Industry And ATVI Russo-Ukrainian War Thread Canadian Politics Mega-thread
Fan Clubs
The Happy Fan Club!
Media & Entertainment
[Manga] One Piece Anime Discussion Thread Movie Discussion! [\m/] Heavy Metal Thread
Sports
MLB/Baseball 2023 2024 - 2026 Football Thread Formula 1 Discussion TeamLiquid Health and Fitness Initiative For 2023
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread High temperatures on bridge(s)
TL Community
The Automated Ban List TeamLiquid Team Shirt On Sale
Blogs
Collective Intelligence: Tea…
TrAiDoS
A very expensive lesson on ma…
Garnet
hello world
radishsoup
Lemme tell you a thing o…
JoinTheRain
RTS Design in Hypercoven
a11
Evil Gacha Games and the…
ffswowsucks
INDEPENDIENTE LA CTM
XenOsky
Customize Sidebar...

Website Feedback

Closed Threads



Active: 847 users

Math Puzzle #3

Blogs > mieda
Post a Reply
1 2 3 Next All
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-12 22:32:52
September 10 2010 20:12 GMT
#1
Let f,g be polynomials with rational coefficients. Suppose f(Q) = g(Q) (i.e. the sets of values of f and g on the rationals are the same). Then f(x) = g(ax + b) for some rational constants a,b.

Remark. It generalizes to number fields with real embeddings.

Note that the converse is trivial.

Solution

The idea is that (mod the full details) there's a fixed discrete subgroup L of Q such that for any integer x, the rational solutions, viewed in y, of g(y) = f(x) are all in L. To extract the behavior of y as x varies, and compare the coefficients at the same time, i.e. the growth rates, you can consider expressions of the form g(y') - g(y) = f(x+1) - f(x) where y' is the corresponding rational number such that g(y') = f(x+1). By mean value theorem (don't quite need this, since f,g are polynomials so one can potentially do all the computations by algebra) the expression extracts out y' - y in terms of f'(x) and g'(y) roughly, and this gives a good comparison of y as x varies. This is the idea, and I do some computations to show that this works.

Also, simple valuation calculations (plug in this, plug in that rational number, compare the p-adic valuations) don't really seem to get anywhere, as I give plenty of counter examples and point out the problems to the claims of one of the posters below.

*
Assault_1
Profile Joined April 2009
Canada1950 Posts
September 10 2010 20:34 GMT
#2
so whats the question?
mieda
Profile Blog Joined February 2010
United States85 Posts
September 10 2010 20:43 GMT
#3
On September 11 2010 05:34 Assault_1 wrote:
so whats the question?


Proving it.
Piege
Profile Joined October 2009
United Kingdom128 Posts
September 10 2010 20:52 GMT
#4
Would a non-math major/non-math enthusiast be able to solve this?
Never_V_ -> Fin
category
Profile Joined July 2009
United States85 Posts
September 10 2010 20:53 GMT
#5
the sets f(Q) and g(Q) are not counting multiplicity right?
category
Profile Joined July 2009
United States85 Posts
September 10 2010 20:54 GMT
#6
On September 11 2010 05:52 Piege wrote:
Would a non-math major/non-math enthusiast be able to solve this?


I don't know the solution yet but I suspect the answer to your question is no.
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 20:56:54
September 10 2010 20:55 GMT
#7
On September 11 2010 05:53 category wrote:
the sets f(Q) and g(Q) are not counting multiplicity right?


They're just sets, not really any structures on them (for ex. ramifications). For example for the functio f(x) = x^2 the set f(Q) is just the set of all squares of rational numbers. We don't care that f(x) = 0 ramifies (and elsewhere unramifies). It's just a naive set.

I wonder if that's what you meant. So yes, I think we're not counting multiplicities here, whatever you mean by that in this context. f(Q) = {y : y = f(a) for some rational a}.
category
Profile Joined July 2009
United States85 Posts
September 10 2010 20:59 GMT
#8
lol. I don't know about ramifications. i just meant, eg in the f(x^2) case, does it matter that 1 is obtained twice? but it sounds like no.

i guess for the functions f=x^2 and g=x^4, f(Q) will be larger than g(Q), because some rationals are the square of another rational but are not a fourth power?
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 21:01:28
September 10 2010 21:00 GMT
#9
On September 11 2010 05:59 category wrote:
lol. I don't know about ramifications. i just meant, eg in the f(x^2) case, does it matter that 1 is obtained twice? but it sounds like no.


Right, just count it once. So for example {1,1} = {1}.

i guess for the functions f=x^2 and g=x^4, f(Q) will be larger than g(Q), because some rationals are the square of another rational but are not a fourth power?


That's right.
Assault_1
Profile Joined April 2009
Canada1950 Posts
September 10 2010 21:04 GMT
#10
Then f(x) = g(ax + b) for some rational constants a,b.


whats the domain of x, rational or real?
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 21:12:02
September 10 2010 21:06 GMT
#11
On September 11 2010 06:04 Assault_1 wrote:
Show nested quote +
Then f(x) = g(ax + b) for some rational constants a,b.


whats the domain of x, rational or real?


any field containing the rationals. It really doesn't matter, since the condition is only imposed on f(Q) and g(Q). You don't need to "see" bigger fields containing the rationals. Any such field is infinite anyway, so if the condition f(x) = g(ax + b) holds for evaluating x on all rationals then it's identical as polynomials (in the ring Q[x]) so evaluation of x on any field containing Q likewise.
category
Profile Joined July 2009
United States85 Posts
September 10 2010 21:09 GMT
#12
On September 11 2010 06:04 Assault_1 wrote:
Show nested quote +
Then f(x) = g(ax + b) for some rational constants a,b.


whats the domain of x, rational or real?


i would say, think of it as being the rationals.

but yeah, i am finding this quite hard, though I find the result very interesting.
sputnik.theory
Profile Blog Joined July 2009
Poland449 Posts
September 10 2010 21:16 GMT
#13
I've noticed that threads like this pop up during the school year...
ITT: TL does your math homework for you
“On the night of the murder I was at home, asleep. The characters in my dream can vouch for me.”
mieda
Profile Blog Joined February 2010
United States85 Posts
September 10 2010 21:16 GMT
#14
On September 11 2010 06:16 sputnik.theory wrote:
I've noticed that threads like this pop up during the school year...
ITT: TL does your math homework for you


Rest assured, I've already solved this. It's not a homework.
Seth_
Profile Blog Joined July 2010
Belgium184 Posts
September 10 2010 21:18 GMT
#15
May I (a non-math major) ask for an example of an f(x) and g(x) polynomial for which this is true.
Fly[DCT]
Profile Joined September 2010
Canada38 Posts
Last Edited: 2010-09-10 21:25:16
September 10 2010 21:18 GMT
#16
On September 11 2010 06:04 Assault_1 wrote:
Show nested quote +
Then f(x) = g(ax + b) for some rational constants a,b.


whats the domain of x, rational or real?


I am guessing the real or complex is fine. Once we can prove this for the real it automatically implies that it's also true for the complex.

On September 11 2010 06:18 Seth_ wrote:
May I (a non-math major) ask for an example of an f(x) and g(x) polynomial for which this is true.


Sure. f(x) = x^2. g(x) = (2x)^2.
lalalalala
Muirhead
Profile Blog Joined October 2007
United States556 Posts
September 10 2010 21:25 GMT
#17
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients
starleague.mit.edu
Muirhead
Profile Blog Joined October 2007
United States556 Posts
September 10 2010 21:26 GMT
#18
Or something like that... don't have time to check everything but should be close
starleague.mit.edu
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-09-10 21:48:28
September 10 2010 21:29 GMT
#19
On September 11 2010 06:25 Muirhead wrote:
f(Q) clearly equals g(Q) if f(x)=g(ax+b)

Thus WLOG f and g have integer coefficients that are relatively prime and 0 as their constant terms.

Suppose f(x)=a_nx^n+...a_1*x.

Suppose g(x)=b_nx^n+...+b_1*x.

Let p^r be a prime power dividing a_1 but not b_1, if such a prime power exists. Then f(x) will always be divisible by p either less than or equal to 0 times or more than r times, while g(p) is divisible by p at least once and at most r times.

So this means that f(Q)=g(Q) then a_1= plus/minus b_1

One can continue inductively through all the coefficients


Need a lot more details, and I'm not convinced of this argument either. You're saying WLOG assume 0 as their constant terms? And then you're assuming deg f = deg g (this is true, but you didn't mention how to prove this at all). And then there's the next paragraph which doesn't seem to make much sense to me.

Enjoy your Friday anyway!
naptiem
Profile Joined July 2009
United States21 Posts
Last Edited: 2010-09-10 21:33:06
September 10 2010 21:29 GMT
#20
Here's an attempt for any field, F:

+ Show Spoiler +

Since f(F)=g(F), g(F) includes f(x) and there must be an element s of F where g(s)=f(x).

Rewrite s in the form ax+b for some a,b in F:

If x = 0, let b = s and a be any number in F.
Then ax+b = a 0 + s = s.

If x is not 0, let a = x^-1, the multiplicative inverse of x in F, and b = s - 1.
Then ax+b = (x^-1) x + (s - 1) = 1 + (s - 1) = s.

In both cases, ax+b = s and g(ax+b) = g(s) = f(x).


Edit: Never mind, I think I misread the problem.
1 2 3 Next All
Please log in or register to reply.
Live Events Refresh
Next event in 3h
[ Submit Event ]
Live Streams
Refresh
StarCraft: Brood War
Shuttle 2127
JulyZerg 714
Larva 375
ToSsGirL 69
sSak 48
Dota 2
NeuroSwarm117
League of Legends
JimRising 789
febbydoto12
Counter-Strike
Stewie2K1133
Super Smash Bros
Mew2King63
Heroes of the Storm
Khaldor152
Other Games
summit1g6754
WinterStarcraft579
ViBE220
Organizations
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 16 non-featured ]
StarCraft 2
• Berry_CruncH346
• practicex 44
• Sammyuel 33
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
League of Legends
• Stunt499
• Jankos477
Other Games
• Scarra1122
Upcoming Events
RSL Revival
3h
Cure vs Bunny
Creator vs Zoun
Maestros of the Game
10h
Maru vs Lambo
herO vs ShoWTimE
BSL Team Wars
12h
Team Hawk vs Team Sziky
Sparkling Tuna Cup
1d 3h
Monday Night Weeklies
1d 9h
The PondCast
4 days
Online Event
5 days
BSL Team Wars
5 days
Team Bonyth vs Team Dewalt
BSL Team Wars
5 days
Maestros of the Game
6 days
[ Show More ]
Cosmonarchy
6 days
Bonyth vs Dewalt
[BSL 2025] Weekly
6 days
Liquipedia Results

Completed

Proleague 2025-09-02
SEL Season 2 Championship
HCC Europe

Ongoing

Copa Latinoamericana 4
BSL 20 Team Wars
KCM Race Survival 2025 Season 3
BSL 21: BSL Points
ASL Season 20
CSL 2025 AUTUMN (S18)
LASL Season 20
RSL Revival: Season 2
Maestros of the Game
Chzzk MurlocKing SC1 vs SC2 Cup #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1

Upcoming

2025 Chongqing Offline CUP
BSL Polish World Championship 2025
BSL Season 21
BSL 21 Team A
EC S1
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025
Thunderpick World Champ.
MESA Nomadic Masters Fall
CS Asia Championships 2025
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.