• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 00:25
CEST 06:25
KST 13:25
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
BGE Stara Zagora 2025: Info & Preview27Code S RO12 Preview: GuMiho, Bunny, SHIN, ByuN3The Memories We Share - Facing the Final(?) GSL46Code S RO12 Preview: Cure, Zoun, Solar, Creator4[ASL19] Finals Preview: Daunting Task30
Community News
Weekly Cups (June 2-8): herO doubles down1[BSL20] ProLeague: Bracket Stage & Dates9GSL Ro4 and Finals moved to Sunday June 15th12Weekly Cups (May 27-June 1): ByuN goes back-to-back0EWC 2025 Regional Qualifier Results26
StarCraft 2
General
Weekly Cups (June 2-8): herO doubles down The SCII GOAT: A statistical Evaluation BGE Stara Zagora 2025: Info & Preview Magnus Carlsen and Fabi review Clem's chess game. Jim claims he and Firefly were involved in match-fixing
Tourneys
Bellum Gens Elite: Stara Zagora 2025 Sparkling Tuna Cup - Weekly Open Tournament SOOPer7s Showmatches 2025 Master Swan Open (Global Bronze-Master 2) $5,100+ SEL Season 2 Championship (SC: Evo)
Strategy
[G] Darkgrid Layout Simple Questions Simple Answers [G] PvT Cheese: 13 Gate Proxy Robo
Custom Maps
[UMS] Zillion Zerglings
External Content
Mutation # 477 Slow and Steady Mutation # 476 Charnel House Mutation # 475 Hard Target Mutation # 474 Futile Resistance
Brood War
General
Mihu vs Korea Players Statistics Will foreigners ever be able to challenge Koreans? BGH auto balance -> http://bghmmr.eu/ BW General Discussion [BSL20] ProLeague: Bracket Stage & Dates
Tourneys
[ASL19] Grand Finals NA Team League 6/8/2025 [Megathread] Daily Proleagues [BSL20] ProLeague Bracket Stage - Day 2
Strategy
I am doing this better than progamers do. [G] How to get started on ladder as a new Z player
Other Games
General Games
Stormgate/Frost Giant Megathread Armies of Exigo - YesYes? Nintendo Switch Thread What do you want from future RTS games? Path of Exile
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
LiquidLegends to reintegrate into TL.net
Heroes of the Storm
Heroes of the Storm 2.0 Simple Questions, Simple Answers
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
US Politics Mega-thread Things Aren’t Peaceful in Palestine Russo-Ukrainian War Thread Vape Nation Thread European Politico-economics QA Mega-thread
Fan Clubs
Maru Fan Club Serral Fan Club
Media & Entertainment
Korean Music Discussion [Manga] One Piece
Sports
2024 - 2025 Football Thread Formula 1 Discussion NHL Playoffs 2024
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread Cleaning My Mechanical Keyboard
TL Community
The Automated Ban List
Blogs
Cognitive styles x game perf…
TrAiDoS
StarCraft improvement
iopq
Heero Yuy & the Tax…
KrillinFromwales
I was completely wrong ab…
jameswatts
Need Your Help/Advice
Glider
Trip to the Zoo
micronesia
Poker
Nebuchad
Customize Sidebar...

Website Feedback

Closed Threads



Active: 22013 users

Math Puzzle - 7 Hats - Page 6

Blogs > Slithe
Post a Reply
Prev 1 4 5 6 7 Next All
saltywet
Profile Blog Joined August 2009
Hong Kong1316 Posts
September 09 2010 22:12 GMT
#101
On September 10 2010 06:57 Slithe wrote:
Show nested quote +
On September 10 2010 06:54 KarlSberg~ wrote:
First I really thought that would be going to be something retarded, but that's actually a very nice problem.
I think this is the strategy, even though I'm having a hard time proving it
+ Show Spoiler +
Assign a number to each color (0..6)
Assign a number to each prisoner (0..6)
Each prisonner adds the colors he sees on all other guys + his number
Sum%7 gives the color the prisoner has to announce
In any possible case one (exactly one) prisoner will be right.


ding ding ding, we have an answer.


i was skeptical about this answer, i messed around with some calculations in excel, i can find counter examples to this and thus this answer does not solve the problem 100%

prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
written color 2 2 2 3 3 3 3
BottleAbuser
Profile Blog Joined December 2007
Korea (South)1888 Posts
September 09 2010 22:13 GMT
#102
On September 10 2010 07:07 Slithe wrote:
Let me try and explain Karlsberg's solution a little bit

+ Show Spoiler [solution] +

We assign each color a number from 0-6

Now we can say that the prisoners are essentially getting a number, c0,c1,c2,c3,c4,c5,c6.

S = (c0 + c1 + c2 + c3 + c4 + c5 + c6) modulo 7

S has seven possible values, 0-6

At this point, what each prisoner is doing is trying to guess what S is, and solving for their own number to match S.

Prisoner 0 assumes S = 0, and solves the equation c0 = S - (c1+c2+c3+c4+c5+c6)
Prisoner 1 assumes S = 1, and solves the equation c1 = S - (c0+c2+c3+c4+c5+c6)
and so on..

At least one of the 7 prisoners will assume the correct S value. That prisoner will be able to guess the correct number for their own hat.


I am so embarrassed.
Compilers are like boyfriends, you miss a period and they go crazy on you.
Nytefish
Profile Blog Joined December 2007
United Kingdom4282 Posts
Last Edited: 2010-09-09 22:14:51
September 09 2010 22:14 GMT
#103
On September 10 2010 07:07 Slithe wrote:
Let me try and explain Karlsberg's solution a little bit

+ Show Spoiler [solution] +

We assign each color a number from 0-6

Now we can say that the prisoners are essentially getting a number, c0,c1,c2,c3,c4,c5,c6.

S = (c0 + c1 + c2 + c3 + c4 + c5 + c6) modulo 7

S has seven possible values, 0-6

At this point, what each prisoner is doing is trying to guess what S is, and solving for their own number to match S.

Prisoner 0 assumes S = 0, and solves the equation c0 = S - (c1+c2+c3+c4+c5+c6)
Prisoner 1 assumes S = 1, and solves the equation c1 = S - (c0+c2+c3+c4+c5+c6)
and so on..

At least one of the 7 prisoners will assume the correct S value. That prisoner will be able to guess the correct number for their own hat.


Ah I read Karlsberg's solution and was typing up the explanation but I thought I'd refresh to see if someone else had mentioned it already. I'm surprised so many people thought there was a silly gimmick to this problem despite it being called a math puzzle.
No I'm never serious.
Lark
Profile Joined December 2009
United States24 Posts
September 09 2010 22:14 GMT
#104
On September 10 2010 07:12 saltywet wrote:
Show nested quote +
On September 10 2010 06:57 Slithe wrote:
On September 10 2010 06:54 KarlSberg~ wrote:
First I really thought that would be going to be something retarded, but that's actually a very nice problem.
I think this is the strategy, even though I'm having a hard time proving it
+ Show Spoiler +
Assign a number to each color (0..6)
Assign a number to each prisoner (0..6)
Each prisonner adds the colors he sees on all other guys + his number
Sum%7 gives the color the prisoner has to announce
In any possible case one (exactly one) prisoner will be right.


ding ding ding, we have an answer.


i was skeptical about this answer, i messed around with some calculations in excel, i can find counter examples to this and thus this answer does not solve the problem 100%

prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
written color 2 2 2 3 3 3 3



I think you forgot to add the prisoner numbers, since prisoners 0,1, and 2 all see the same sum but are guessing the same number...
BottleAbuser
Profile Blog Joined December 2007
Korea (South)1888 Posts
September 09 2010 22:15 GMT
#105
saltywet, you made a mistake somewhere. Prisoner #1 would answer 3, not 2. (6*2 + 1*4 + 1, his own number). Probably you didn't add the prisoner numbers before taking the modulus.
Compilers are like boyfriends, you miss a period and they go crazy on you.
Slithe
Profile Blog Joined February 2007
United States985 Posts
September 09 2010 22:16 GMT
#106
On September 10 2010 07:12 saltywet wrote:
Show nested quote +
On September 10 2010 06:57 Slithe wrote:
On September 10 2010 06:54 KarlSberg~ wrote:
First I really thought that would be going to be something retarded, but that's actually a very nice problem.
I think this is the strategy, even though I'm having a hard time proving it
+ Show Spoiler +
Assign a number to each color (0..6)
Assign a number to each prisoner (0..6)
Each prisonner adds the colors he sees on all other guys + his number
Sum%7 gives the color the prisoner has to announce
In any possible case one (exactly one) prisoner will be right.


ding ding ding, we have an answer.


i was skeptical about this answer, i messed around with some calculations in excel, i can find counter examples to this and thus this answer does not solve the problem 100%

prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
written color 2 2 2 3 3 3 3


prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
sum of others 2 2 2 0 0 0 0
written color 5 6 0 3 4 5 6

prisoner 1 gets it right.
Logo
Profile Blog Joined April 2010
United States7542 Posts
Last Edited: 2010-09-09 22:19:36
September 09 2010 22:18 GMT
#107
Basically you need to map out all the possible combinations then come up with a guessing strategy for each player that makes a certain # of those combinations 'wins' instead of losses such that the combined strategies make each possible outcome a win.

Each guessing strategy has to win for square root of n^n unique combinations where n is the # of people (so for 2 each person has a strategy that wins squareroot of 2*2 BB WW is one person BW WB is another). For 3 people each strategy needs to win for 9 unique cases.


Edit looks like someone got the answer vs my explanation of what the answer requires.
Logo
Impervious
Profile Blog Joined March 2009
Canada4198 Posts
September 09 2010 22:23 GMT
#108
Damn, that is actually pretty simple.....
~ \(ˌ)im-ˈpər-vē-əs\ : not capable of being damaged or harmed.
jalstar
Profile Blog Joined September 2009
United States8198 Posts
September 09 2010 22:25 GMT
#109
Possible
red, orange, yellow, green, blue, indigo, violet
Actual
red, red, red, yellow, blue, indigo, indigo


Red = 0, Orange = 1, Yellow = 2, Green = 3, Blue = 4, Indigo = 5, Violet = 6

Prisoner 0 (red)
Sees red, red, yellow, blue, indigo, indigo for a sum of 16. Adds his own number, 0. 16%7 = 2. Guesses yellow.

Prisoner 1 (red)
Sees red, red, yellow, blue, indigo, indigo for a sum of 16. Adds his own number, 1. 17%7 = 3. Guesses green.

Prisoner 2 (red)
Sees red, red, yellow, blue, indigo, indigo for a sum of 16. Adds his own number, 2. 18%7 = 4. Guesses blue.

Prisoner 3 (yellow)
Sees red, red, red, blue, indigo, indigo for a sum of 14. Adds his own number, 3. 17%7 = 3. Guesses green.

Prisoner 4 (blue)
Sees red, red, red, yellow, indigo, indigo for a sum of 12. Adds his own number, 4. 16%7 = 2. Guesses yellow.

Prisoner 5 (indigo)
Sees red, red, red, yellow, blue, indigo for a sum of 11. Adds his own number, 5. 16%7 = 2. Guesses yellow.

Prisoner 6 (indigo)
Sees red, red, red, yellow, blue, indigo for a sum of 11. Adds his own number, 6. 17%7 = 2. Guesses green.

All prisoners die.

Let me know if there's a problem with my proof by contradiction, but I think Karlsberg's solution doesn't work.

+ Show Spoiler [Non-mathematical answer] +

This doesn't break any rules in the OP. Two prisoners agree beforehand to write each other's names on their pieces of paper. They also write the color of the hat that the other person is wearing. Bam, foolproof answer.
saltywet
Profile Blog Joined August 2009
Hong Kong1316 Posts
Last Edited: 2010-09-09 22:31:10
September 09 2010 22:28 GMT
#110
On September 10 2010 07:16 Slithe wrote:
Show nested quote +
On September 10 2010 07:12 saltywet wrote:
On September 10 2010 06:57 Slithe wrote:
On September 10 2010 06:54 KarlSberg~ wrote:
First I really thought that would be going to be something retarded, but that's actually a very nice problem.
I think this is the strategy, even though I'm having a hard time proving it
+ Show Spoiler +
Assign a number to each color (0..6)
Assign a number to each prisoner (0..6)
Each prisonner adds the colors he sees on all other guys + his number
Sum%7 gives the color the prisoner has to announce
In any possible case one (exactly one) prisoner will be right.


ding ding ding, we have an answer.


i was skeptical about this answer, i messed around with some calculations in excel, i can find counter examples to this and thus this answer does not solve the problem 100%

prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
written color 2 2 2 3 3 3 3


prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
sum of others 2 2 2 0 0 0 0
written color 5 6 0 3 4 5 6

prisoner 1 gets it right.


i got some mistake, written color i actually get
2 3 4 3 4 5 6

using [(number* of prisoner) + (color of other prisoners)]%7

how did you get 5 6 0 for prisoner 0 1 2
The_Pacifist
Profile Blog Joined May 2010
United States540 Posts
Last Edited: 2010-09-09 22:30:47
September 09 2010 22:29 GMT
#111
Well, it looks like it was a valid answer after all. I don't feel too bad for not getting it since I had to google what all that "modulus" stuff was ("17%7? That's not on my 4 function calculator!"), so the answer was a little out of my possible reach.

But now I feel stupid for having to google it.
gondolin
Profile Blog Joined September 2007
France332 Posts
September 09 2010 22:30 GMT
#112
On September 10 2010 07:14 Lark wrote:
Show nested quote +
On September 10 2010 07:12 saltywet wrote:
On September 10 2010 06:57 Slithe wrote:
On September 10 2010 06:54 KarlSberg~ wrote:
First I really thought that would be going to be something retarded, but that's actually a very nice problem.
I think this is the strategy, even though I'm having a hard time proving it
+ Show Spoiler +
Assign a number to each color (0..6)
Assign a number to each prisoner (0..6)
Each prisonner adds the colors he sees on all other guys + his number
Sum%7 gives the color the prisoner has to announce
In any possible case one (exactly one) prisoner will be right.


ding ding ding, we have an answer.


i was skeptical about this answer, i messed around with some calculations in excel, i can find counter examples to this and thus this answer does not solve the problem 100%

prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
written color 2 2 2 3 3 3 3



I think you forgot to add the prisoner numbers, since prisoners 0,1, and 2 all see the same sum but are guessing the same number...


Even so it does not work: consider
0 1 2 3 4 5 6
0 2 2 3 4 5 6
1 1 1 1 1 1 1
jalstar
Profile Blog Joined September 2009
United States8198 Posts
September 09 2010 22:31 GMT
#113
Prisoner 0 1 2 3 4 5 6
Color 0 0 0 2 4 5 5
Sum 2 2 2 0 5 4 4
Guess 2 3 4 3 2 2 3


Simpler form.
Slithe
Profile Blog Joined February 2007
United States985 Posts
September 09 2010 22:32 GMT
#114
On September 10 2010 07:25 jalstar wrote:
Show nested quote +
Possible
red, orange, yellow, green, blue, indigo, violet
Actual
red, red, red, yellow, blue, indigo, indigo


Red = 0, Orange = 1, Yellow = 2, Green = 3, Blue = 4, Indigo = 5, Violet = 6

Prisoner 0 (red)
Sees red, red, yellow, blue, indigo, indigo for a sum of 16. Adds his own number, 0. 16%7 = 2. Guesses yellow.

Prisoner 1 (red)
Sees red, red, yellow, blue, indigo, indigo for a sum of 16. Adds his own number, 1. 17%7 = 3. Guesses green.

Prisoner 2 (red)
Sees red, red, yellow, blue, indigo, indigo for a sum of 16. Adds his own number, 2. 18%7 = 4. Guesses blue.

Prisoner 3 (yellow)
Sees red, red, red, blue, indigo, indigo for a sum of 14. Adds his own number, 3. 17%7 = 3. Guesses green.

Prisoner 4 (blue)
Sees red, red, red, yellow, indigo, indigo for a sum of 12. Adds his own number, 4. 16%7 = 2. Guesses yellow.

Prisoner 5 (indigo)
Sees red, red, red, yellow, blue, indigo for a sum of 11. Adds his own number, 5. 16%7 = 2. Guesses yellow.

Prisoner 6 (indigo)
Sees red, red, red, yellow, blue, indigo for a sum of 11. Adds his own number, 6. 17%7 = 2. Guesses green.

All prisoners die.

Let me know if there's a problem with my proof by contradiction, but I think Karlsberg's solution doesn't work.

+ Show Spoiler [Non-mathematical answer] +

This doesn't break any rules in the OP. Two prisoners agree beforehand to write each other's names on their pieces of paper. They also write the color of the hat that the other person is wearing. Bam, foolproof answer.


You're right, Karlsberg actually didn't give quite the right solution, but it looked similar to the right answer so I got tricked. Consult my spoiler for the correct solution.

Instead of doing sum + own_number = color, you do own_number - sum = color. In your example, I believe prisoner 2 has 2 - 16 = 0 % 7, and guesses red correctly.
saltywet
Profile Blog Joined August 2009
Hong Kong1316 Posts
September 09 2010 22:32 GMT
#115
On September 10 2010 07:30 gondolin wrote:
Show nested quote +
On September 10 2010 07:14 Lark wrote:
On September 10 2010 07:12 saltywet wrote:
On September 10 2010 06:57 Slithe wrote:
On September 10 2010 06:54 KarlSberg~ wrote:
First I really thought that would be going to be something retarded, but that's actually a very nice problem.
I think this is the strategy, even though I'm having a hard time proving it
+ Show Spoiler +
Assign a number to each color (0..6)
Assign a number to each prisoner (0..6)
Each prisonner adds the colors he sees on all other guys + his number
Sum%7 gives the color the prisoner has to announce
In any possible case one (exactly one) prisoner will be right.


ding ding ding, we have an answer.


i was skeptical about this answer, i messed around with some calculations in excel, i can find counter examples to this and thus this answer does not solve the problem 100%

prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
written color 2 2 2 3 3 3 3




I think you forgot to add the prisoner numbers, since prisoners 0,1, and 2 all see the same sum but are guessing the same number...


Even so it does not work: consider
0 1 2 3 4 5 6
0 2 2 3 4 5 6
1 1 1 1 1 1 1


prisoner 1 would actually be 0, but that still does not change the point
djcube
Profile Blog Joined July 2009
United States985 Posts
September 09 2010 22:33 GMT
#116
I'm probably not understanding the solution, but how does each prisoner know what number to label himself if they cannot communicate?
LeoTheLion
Profile Blog Joined July 2006
China958 Posts
Last Edited: 2010-09-09 22:34:56
September 09 2010 22:33 GMT
#117
On September 10 2010 07:25 jalstar wrote:
Show nested quote +
Possible
red, orange, yellow, green, blue, indigo, violet
Actual
red, red, red, yellow, blue, indigo, indigo


Red = 0, Orange = 1, Yellow = 2, Green = 3, Blue = 4, Indigo = 5, Violet = 6

Prisoner 0 (red)
Sees red, red, yellow, blue, indigo, indigo for a sum of 16. Adds his own number, 0. 16%7 = 2. Guesses yellow.

Prisoner 1 (red)
Sees red, red, yellow, blue, indigo, indigo for a sum of 16. Adds his own number, 1. 17%7 = 3. Guesses green.

Prisoner 2 (red)
Sees red, red, yellow, blue, indigo, indigo for a sum of 16. Adds his own number, 2. 18%7 = 4. Guesses blue.

Prisoner 3 (yellow)
Sees red, red, red, blue, indigo, indigo for a sum of 14. Adds his own number, 3. 17%7 = 3. Guesses green.

Prisoner 4 (blue)
Sees red, red, red, yellow, indigo, indigo for a sum of 12. Adds his own number, 4. 16%7 = 2. Guesses yellow.

Prisoner 5 (indigo)
Sees red, red, red, yellow, blue, indigo for a sum of 11. Adds his own number, 5. 16%7 = 2. Guesses yellow.

Prisoner 6 (indigo)
Sees red, red, red, yellow, blue, indigo for a sum of 11. Adds his own number, 6. 17%7 = 2. Guesses green.

All prisoners die.

Let me know if there's a problem with my proof by contradiction, but I think Karlsberg's solution doesn't work.

+ Show Spoiler [Non-mathematical answer] +

This doesn't break any rules in the OP. Two prisoners agree beforehand to write each other's names on their pieces of paper. They also write the color of the hat that the other person is wearing. Bam, foolproof answer.


you subtract the sum from the prisoner's own number, not add.

so we have

0-16 = 5 mod 7
1-16 = 6
2-16 = 0
3-14 = 3
4-12 = 6
5-10 = 2
6-10 = 1

prisoner 2 gets it right
Communism is not love. Communism is a hammer which we use to crush the enemy. -Chairman Mao
Glull
Profile Blog Joined November 2009
Germany404 Posts
September 09 2010 22:33 GMT
#118
this solution doesnt work because it relies on the prisoners communicating their own number, which is not possible with the scenario in the opening post.
Slithe
Profile Blog Joined February 2007
United States985 Posts
September 09 2010 22:36 GMT
#119
On September 10 2010 07:28 saltywet wrote:
Show nested quote +
On September 10 2010 07:16 Slithe wrote:
On September 10 2010 07:12 saltywet wrote:
On September 10 2010 06:57 Slithe wrote:
On September 10 2010 06:54 KarlSberg~ wrote:
First I really thought that would be going to be something retarded, but that's actually a very nice problem.
I think this is the strategy, even though I'm having a hard time proving it
+ Show Spoiler +
Assign a number to each color (0..6)
Assign a number to each prisoner (0..6)
Each prisonner adds the colors he sees on all other guys + his number
Sum%7 gives the color the prisoner has to announce
In any possible case one (exactly one) prisoner will be right.


ding ding ding, we have an answer.


i was skeptical about this answer, i messed around with some calculations in excel, i can find counter examples to this and thus this answer does not solve the problem 100%

prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
written color 2 2 2 3 3 3 3


prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
sum of others 2 2 2 0 0 0 0
written color 5 6 0 3 4 5 6

prisoner 1 gets it right.


i got some mistake, written color i actually get
2 3 4 3 4 5 6

using [(number* of prisoner) + (color of other prisoners)]%7

how did you get 5 6 0 for prisoner 0 1 2


Karlsberg's solution was slightly wrong, look at my solution for the way to do it.
Logo
Profile Blog Joined April 2010
United States7542 Posts
September 09 2010 22:36 GMT
#120
On September 10 2010 07:33 Glull wrote:
this solution doesnt work because it relies on the prisoners communicating their own number, which is not possible with the scenario in the opening post.


The problem clearly states the prisoners know the colors and they can't communicate after being seating. It makes no mention of before.
Logo
Prev 1 4 5 6 7 Next All
Please log in or register to reply.
Live Events Refresh
Next event in 6h 35m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
Nina 232
NeuroSwarm 205
Livibee 192
StarCraft: Brood War
Sea 2206
ToSsGirL 52
Movie 15
Bale 15
Terrorterran 15
Dota 2
monkeys_forever691
League of Legends
JimRising 924
Super Smash Bros
Mew2King112
Heroes of the Storm
Khaldor87
Other Games
summit1g9610
shahzam2015
WinterStarcraft453
ViBE235
RuFF_SC292
Models2
Organizations
Dota 2
PGL Dota 2 - Secondary Stream1776
Other Games
gamesdonequick664
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 17 non-featured ]
StarCraft 2
• Berry_CruncH299
• practicex 51
• Kozan
• AfreecaTV YouTube
• sooper7s
• intothetv
• IndyKCrew
• LaughNgamezSOOP
• Migwel
StarCraft: Brood War
• RayReign 27
• Diggity3
• STPLYoutube
• ZZZeroYoutube
• BSLYoutube
League of Legends
• Doublelift5736
• Lourlo1310
Counter-Strike
• Shiphtur2409
Upcoming Events
Wardi Open
6h 35m
Replay Cast
19h 35m
Replay Cast
1d 5h
WardiTV Invitational
1d 6h
WardiTV Invitational
1d 6h
GSL Code S
2 days
Rogue vs GuMiho
Maru vs Solar
Online Event
2 days
Replay Cast
2 days
GSL Code S
3 days
herO vs Zoun
Classic vs Bunny
The PondCast
3 days
[ Show More ]
Replay Cast
3 days
WardiTV Invitational
4 days
Korean StarCraft League
4 days
CranKy Ducklings
5 days
WardiTV Invitational
5 days
Cheesadelphia
5 days
GSL Code S
6 days
Sparkling Tuna Cup
6 days
Replay Cast
6 days
Liquipedia Results

Completed

CSL Season 17: Qualifier 2
BGE Stara Zagora 2025
Heroes 10 EU

Ongoing

JPL Season 2
BSL 2v2 Season 3
BSL Season 20
KCM Race Survival 2025 Season 2
NPSL S3
Rose Open S1
CSL 17: 2025 SUMMER
2025 GSL S2
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025
PGL Astana 2025
Asian Champions League '25
ECL Season 49: Europe
BLAST Rivals Spring 2025
MESA Nomadic Masters
CCT Season 2 Global Finals
IEM Melbourne 2025
YaLLa Compass Qatar 2025
PGL Bucharest 2025
BLAST Open Spring 2025

Upcoming

Copa Latinoamericana 4
CSLPRO Last Chance 2025
CSLPRO Chat StarLAN 3
K-Championship
SEL Season 2 Championship
Esports World Cup 2025
HSC XXVII
Championship of Russia 2025
Murky Cup #2
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.