• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 16:27
CEST 22:27
KST 05:27
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
[ASL19] Finals Recap: Standing Tall10HomeStory Cup 27 - Info & Preview18Classic wins Code S Season 2 (2025)16Code S RO4 & Finals Preview: herO, Rogue, Classic, GuMiho0TL Team Map Contest #5: Presented by Monster Energy6
Community News
Firefly given lifetime ban by ESIC following match-fixing investigation11$25,000 Streamerzone StarCraft Pro Series announced5Weekly Cups (June 30 - July 6): Classic Doubles6[BSL20] Non-Korean Championship 4x BSL + 4x China9Flash Announces Hiatus From ASL66
StarCraft 2
General
Firefly given lifetime ban by ESIC following match-fixing investigation TL Team Map Contest #4: Winners Weekly Cups (June 30 - July 6): Classic Doubles The SCII GOAT: A statistical Evaluation The GOAT ranking of GOAT rankings
Tourneys
$25,000 Streamerzone StarCraft Pro Series announced FEL Cracov 2025 (July 27) - $8000 live event Sparkling Tuna Cup - Weekly Open Tournament RSL: Revival, a new crowdfunded tournament series WardiTV Mondays
Strategy
How did i lose this ZvP, whats the proper response Simple Questions Simple Answers
Custom Maps
[UMS] Zillion Zerglings
External Content
Mutation # 481 Fear and Lava Mutation # 480 Moths to the Flame Mutation # 479 Worn Out Welcome Mutation # 478 Instant Karma
Brood War
General
BGH Auto Balance -> http://bghmmr.eu/ ASL20 Preliminary Maps [G] Progamer Settings [ASL19] Finals Recap: Standing Tall SC uni coach streams logging into betting site
Tourneys
[Megathread] Daily Proleagues [BSL20] Non-Korean Championship 4x BSL + 4x China [BSL20] Grand Finals - Sunday 20:00 CET CSL Xiamen International Invitational
Strategy
Simple Questions, Simple Answers I am doing this better than progamers do.
Other Games
General Games
Nintendo Switch Thread Stormgate/Frost Giant Megathread Path of Exile What do you want from future RTS games? Beyond All Reason
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Positive Thoughts on Setting Up a Dual-Caliber FX
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
US Politics Mega-thread Things Aren’t Peaceful in Palestine Russo-Ukrainian War Thread Summer Games Done Quick 2025! Stop Killing Games - European Citizens Initiative
Fan Clubs
SKT1 Classic Fan Club! Maru Fan Club
Media & Entertainment
Anime Discussion Thread [Manga] One Piece [\m/] Heavy Metal Thread
Sports
Formula 1 Discussion 2024 - 2025 Football Thread NBA General Discussion TeamLiquid Health and Fitness Initiative For 2023 NHL Playoffs 2024
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
The Automated Ban List
Blogs
momentary artworks from des…
tankgirl
Culture Clash in Video Games…
TrAiDoS
from making sc maps to makin…
Husyelt
StarCraft improvement
iopq
Customize Sidebar...

Website Feedback

Closed Threads



Active: 570 users

Math Puzzle - 7 Hats - Page 7

Blogs > Slithe
Post a Reply
Prev 1 5 6 7 All
Muff2n
Profile Blog Joined March 2009
United Kingdom250 Posts
September 09 2010 22:37 GMT
#121
Can someone post a link to the proof of the solution? I'm too tried to bother thinking about this atm and don't see the method people could have used to arrive at the answer.

Also yes the amount of people trying to solve this blatant maths puzzle via communication was lol.
Slithe
Profile Blog Joined February 2007
United States985 Posts
Last Edited: 2010-09-09 22:40:53
September 09 2010 22:37 GMT
#122
On September 10 2010 07:33 Glull wrote:
this solution doesnt work because it relies on the prisoners communicating their own number, which is not possible with the scenario in the opening post.


The prisoners designate a number to each guy beforehand. They are free to communicate a strategy before sitting down.

@Muff2n, I posted the solution in the opening post.
gondolin
Profile Blog Joined September 2007
France332 Posts
Last Edited: 2010-09-09 23:03:47
September 09 2010 22:40 GMT
#123
On September 10 2010 07:32 saltywet wrote:
Show nested quote +
On September 10 2010 07:30 gondolin wrote:
On September 10 2010 07:14 Lark wrote:
On September 10 2010 07:12 saltywet wrote:
On September 10 2010 06:57 Slithe wrote:
On September 10 2010 06:54 KarlSberg~ wrote:
First I really thought that would be going to be something retarded, but that's actually a very nice problem.
I think this is the strategy, even though I'm having a hard time proving it
+ Show Spoiler +
Assign a number to each color (0..6)
Assign a number to each prisoner (0..6)
Each prisonner adds the colors he sees on all other guys + his number
Sum%7 gives the color the prisoner has to announce
In any possible case one (exactly one) prisoner will be right.


ding ding ding, we have an answer.


i was skeptical about this answer, i messed around with some calculations in excel, i can find counter examples to this and thus this answer does not solve the problem 100%

prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
written color 2 2 2 3 3 3 3






I think you forgot to add the prisoner numbers, since prisoners 0,1, and 2 all see the same sum but are guessing the same number...


Even so it does not work: consider
0 1 2 3 4 5 6
0 2 2 3 4 5 6
1 1 1 1 1 1 1


prisoner 1 would actually be 0, but that still does not change the point


Oh yeah thanks, I suck at calculus
I started from
0 1 2 3 4 5 6
0 1 2 3 4 5 6
0 0 0 0 0 0 0

then add 1 to the color of number 1, or add two to the color of number 2, ...
The same counter example work if you substract the number of the person, you start with
0 1 2 3 4 5 6
0 -1 -2 -3 -4 -5 -6
0 0 0 0 0 0 0
and you substract 1 to the colors of number 1, or two to the color of number 2, ...

Edit: Howewer it works indeed if we substract the counted color: the person i announce
i-(S-c_i), and he wins when i-(S-c_i)=c_i, so when i=S.
Happy.fairytail
Profile Blog Joined May 2010
United States327 Posts
Last Edited: 2010-09-09 22:46:03
September 09 2010 22:43 GMT
#124
I guess I'm not a mathematician after all :D but here's my ENFP intuitive way of thinking about it... in a 3 hat problem, there are 27 possible combinations. Each person will see 9 possible scenarios. If you find a way such that each person gives a different answer for each of the 27 possible combinations using the 9 scenioars they see, you can cover all your bases.

For example, Guy1 sees 11 and if he choses 1, then 111 is taken care of, but Guy1 is no longer able to test for 211 and 311. However, Guy2 will be able to test for 211 when he sees 21 and chooses 1 and Guy3 will be able to test for 311 when he sees 31 and chooses 1.

However, then Guy2 will be unable to test for 221 and 231, and Guy3 is unable to test for 312 and 313.

But as long as you're able to keep going and make sure the other 2 guys can test for the combinations you can't test, you're ok -- and there is ONE solution, given like I said, that will cover 27 combinations, by using 3 people who each will see 9 scenarios.

And if you extend that to 7 hats, there are 823,543 combinations, 117,649 scenarios and 7 guys. Haha...I wonder if there's a way to solve this problem using matrices rather than straight up mod equations...
Slithe
Profile Blog Joined February 2007
United States985 Posts
September 09 2010 22:47 GMT
#125
On September 10 2010 07:43 Happy.fairytail wrote:
I guess I'm not a mathematician after all :D but here's my ENFP intuitive way of thinking about it... in a 3 hat problem, there are 27 possible combinations. Each person will see 9 possible scenarios. If you find a way such that each person gives a different answer for each of the 27 possible combinations using the 9 scenioars they see, you can cover all your bases.

For example, Guy1 sees 11 and if he choses 1, then 111 is taken care of, but Guy1 is no longer able to test for 211 and 311. However, Guy2 will be able to test for 211 when he sees 21 and chooses 1 and Guy3 will be able to test for 311 when he sees 31 and chooses 1.

However, then Guy2 will be unable to test for 221 and 231, and Guy3 is unable to test for 312 and 313.

But as long as you're able to keep going and make sure the other 2 guys can test for the combinations you can't test, you're ok -- and there is ONE solution, given like I said, that will cover 27 combinations, by using 3 people who each will see 9 scenarios.

And if you extend that to 7 hats, there are 823,543 combinations, 117,649 scenarios and 7 guys. Haha...I wonder if there's a way to solve this problem using matrices rather than straight up mod equations...


Your way of thinking about it is good. Now all you have to do is find a proper mapping from the combinations to the people's guesses
saltywet
Profile Blog Joined August 2009
Hong Kong1316 Posts
September 09 2010 22:48 GMT
#126
On September 10 2010 07:36 Slithe wrote:
Show nested quote +
On September 10 2010 07:28 saltywet wrote:
On September 10 2010 07:16 Slithe wrote:
On September 10 2010 07:12 saltywet wrote:
On September 10 2010 06:57 Slithe wrote:
On September 10 2010 06:54 KarlSberg~ wrote:
First I really thought that would be going to be something retarded, but that's actually a very nice problem.
I think this is the strategy, even though I'm having a hard time proving it
+ Show Spoiler +
Assign a number to each color (0..6)
Assign a number to each prisoner (0..6)
Each prisonner adds the colors he sees on all other guys + his number
Sum%7 gives the color the prisoner has to announce
In any possible case one (exactly one) prisoner will be right.


ding ding ding, we have an answer.


i was skeptical about this answer, i messed around with some calculations in excel, i can find counter examples to this and thus this answer does not solve the problem 100%

prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
written color 2 2 2 3 3 3 3


prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
sum of others 2 2 2 0 0 0 0
written color 5 6 0 3 4 5 6

prisoner 1 gets it right.


i got some mistake, written color i actually get
2 3 4 3 4 5 6

using [(number* of prisoner) + (color of other prisoners)]%7

how did you get 5 6 0 for prisoner 0 1 2


Karlsberg's solution was slightly wrong, look at my solution for the way to do it.


i still dont know how you got 5 6 0

say for prison 0, color of other prisoners = 6+6+4*1 = 16, 0 -16 = 16, mod7 = 2, so how did you get 5?

anyways
i used your solution for another problem

[(number of prison)-(color of other prisoners)]%7

prisoner 0 1 2 3 4 5 6
his color 6 6 6 3 3 2 3
written color 2 1 0 2 1 1 6

solution check:
prisoner 0
0-(6+6+3+3+2+3) = 23, mod7 = 2
prisoner 1
1-(6+6+3+3+2+3) = 22, mod7 = 1
prisoner 2
2-(6+6+3+3+2+3) = 21, mod7 = 0
prisoner 3
3-(6+6+6+3+2+3) = 23, mod7 = 2
prisoner 4
4-(6+6+6+3+2+3) = 22, mod7 = 1
prisoner 5
5-(6+6+6+3+3+3) = 22, mod7 = 1
prisoner 6
6-(6+6+6+3+2+3) = 20, mod7 = 6
BottleAbuser
Profile Blog Joined December 2007
Korea (South)1888 Posts
Last Edited: 2010-09-09 22:52:03
September 09 2010 22:49 GMT
#127
Slithe's explanation is pretty clear. So, of course, I will restate it.

+ Show Spoiler +
We start with the fact that the summation of the values of the hats modulo 7 is a number between 0 and 6, inclusive, and it doesn't change once the hats have been assigned.

That is, [hat1 + hat2 + hat3 + hat4 + hat5 + hat6 + hat7] % 7 = C, for some number C that can't change.

For each prisoner, there is one unknown hat (his own). There is also the unknown value C. If he guesses a value for C, then he can solve for his own hat value.

Since there are 7 possible values for C, each prisoner agrees to choose a different value to guess for C.

Then, exactly 1 prisoner will choose the correct value (the other 6 will choose the wrong values). He will then proceed to guess his own hat value correctly.

Note that this won't work if you have fewer prisoners than hat colors.
Compilers are like boyfriends, you miss a period and they go crazy on you.
silveryms
Profile Joined January 2010
United States23 Posts
Last Edited: 2010-09-09 23:22:55
September 09 2010 22:55 GMT
#128
I can prove that Slithe's answer is correct rigorously:

Let c_i denote the color (0-6) for player i.
Let C denote the sum of all c_i

Now, we know that x = C (mod 7) for some value of x between 0 and 6. This is a property of mods.

Now let's say each player i picks a color p_i = i - (C - c_i) (mod 7). (C - c_i) is observable by looking at the sum of all the other hats.

So p_i = i - C + c_i (mod 7). For player x though, we know that x = C (mod 7). So if we add these two mod relations together (another property of mods) we get:

p_x + x = x - C + c_x + C (mod 7).

Therefore,
p_x + x = c_x + x (mod 7)

And since x is less than 7,

p_x = c_x. So player x will pick his number!
Slithe
Profile Blog Joined February 2007
United States985 Posts
September 09 2010 22:55 GMT
#129
On September 10 2010 07:48 saltywet wrote:
Show nested quote +
On September 10 2010 07:36 Slithe wrote:
On September 10 2010 07:28 saltywet wrote:
On September 10 2010 07:16 Slithe wrote:
On September 10 2010 07:12 saltywet wrote:
On September 10 2010 06:57 Slithe wrote:
On September 10 2010 06:54 KarlSberg~ wrote:
First I really thought that would be going to be something retarded, but that's actually a very nice problem.
I think this is the strategy, even though I'm having a hard time proving it
+ Show Spoiler +
Assign a number to each color (0..6)
Assign a number to each prisoner (0..6)
Each prisonner adds the colors he sees on all other guys + his number
Sum%7 gives the color the prisoner has to announce
In any possible case one (exactly one) prisoner will be right.


ding ding ding, we have an answer.


i was skeptical about this answer, i messed around with some calculations in excel, i can find counter examples to this and thus this answer does not solve the problem 100%

prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
written color 2 2 2 3 3 3 3


prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
sum of others 2 2 2 0 0 0 0
written color 5 6 0 3 4 5 6

prisoner 1 gets it right.


i got some mistake, written color i actually get
2 3 4 3 4 5 6

using [(number* of prisoner) + (color of other prisoners)]%7

how did you get 5 6 0 for prisoner 0 1 2


Karlsberg's solution was slightly wrong, look at my solution for the way to do it.


i still dont know how you got 5 6 0

say for prison 0, color of other prisoners = 6+6+4*1 = 16, 0 -16 = 16, mod7 = 2, so how did you get 5?

anyways
i used your solution for another problem

[(number of prison)-(color of other prisoners)]%7

prisoner 0 1 2 3 4 5 6
his color 6 6 6 3 3 2 3
written color 2 1 0 2 1 1 6

solution check:
prisoner 0
0-(6+6+3+3+2+3) = 23, mod7 = 2
prisoner 1
1-(6+6+3+3+2+3) = 22, mod7 = 1
prisoner 2
2-(6+6+3+3+2+3) = 21, mod7 = 0
prisoner 3
3-(6+6+6+3+2+3) = 23, mod7 = 2
prisoner 4
4-(6+6+6+3+2+3) = 22, mod7 = 1
prisoner 5
5-(6+6+6+3+3+3) = 22, mod7 = 1
prisoner 6
6-(6+6+6+3+2+3) = 20, mod7 = 6


0-16 = -16 = 5 mod 7
equivalently, 21 = 0 mod 7, 21-16 = 5 mod 7

For your new solution, I'll just arithmetic check your first prisoner.
0-(6+6+3+3+2+3) = -23, mod7 = 5
tofucake
Profile Blog Joined October 2009
Hyrule19031 Posts
Last Edited: 2010-09-09 23:02:42
September 09 2010 23:02 GMT
#130
On September 10 2010 07:48 saltywet wrote:
say for prison 0, color of other prisoners = 6+6+4*1 = 16, 0 -16 = 16, mod7 = 2, so how did you get 5?

I still don't know how you got -16 = 16

But his logic, while wrong, is sound.
-2 is outside 0..7, so add 7. -2+7=5

But that's not how modulo works.
Liquipediaasante sana squash banana
Phant
Profile Joined August 2010
United States737 Posts
September 09 2010 23:06 GMT
#131
On September 10 2010 07:55 Slithe wrote:
Show nested quote +
On September 10 2010 07:48 saltywet wrote:
On September 10 2010 07:36 Slithe wrote:
On September 10 2010 07:28 saltywet wrote:
On September 10 2010 07:16 Slithe wrote:
On September 10 2010 07:12 saltywet wrote:
On September 10 2010 06:57 Slithe wrote:
On September 10 2010 06:54 KarlSberg~ wrote:
First I really thought that would be going to be something retarded, but that's actually a very nice problem.
I think this is the strategy, even though I'm having a hard time proving it
+ Show Spoiler +
Assign a number to each color (0..6)
Assign a number to each prisoner (0..6)
Each prisonner adds the colors he sees on all other guys + his number
Sum%7 gives the color the prisoner has to announce
In any possible case one (exactly one) prisoner will be right.


ding ding ding, we have an answer.


i was skeptical about this answer, i messed around with some calculations in excel, i can find counter examples to this and thus this answer does not solve the problem 100%

prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
written color 2 2 2 3 3 3 3


prisoner 0 1 2 3 4 5 6
his color 6 6 6 1 1 1 1
sum of others 2 2 2 0 0 0 0
written color 5 6 0 3 4 5 6

prisoner 1 gets it right.


i got some mistake, written color i actually get
2 3 4 3 4 5 6

using [(number* of prisoner) + (color of other prisoners)]%7

how did you get 5 6 0 for prisoner 0 1 2


Karlsberg's solution was slightly wrong, look at my solution for the way to do it.


i still dont know how you got 5 6 0

say for prison 0, color of other prisoners = 6+6+4*1 = 16, 0 -16 = 16, mod7 = 2, so how did you get 5?

anyways
i used your solution for another problem

[(number of prison)-(color of other prisoners)]%7

prisoner 0 1 2 3 4 5 6
his color 6 6 6 3 3 2 3
written color 2 1 0 2 1 1 6

solution check:
prisoner 0
0-(6+6+3+3+2+3) = 23, mod7 = 2
prisoner 1
1-(6+6+3+3+2+3) = 22, mod7 = 1
prisoner 2
2-(6+6+3+3+2+3) = 21, mod7 = 0
prisoner 3
3-(6+6+6+3+2+3) = 23, mod7 = 2
prisoner 4
4-(6+6+6+3+2+3) = 22, mod7 = 1
prisoner 5
5-(6+6+6+3+3+3) = 22, mod7 = 1
prisoner 6
6-(6+6+6+3+2+3) = 20, mod7 = 6


0-16 = -16 = 5 mod 7
equivalently, 21 = 0 mod 7, 21-16 = 5 mod 7

For your new solution, I'll just arithmetic check your first prisoner.
0-(6+6+3+3+2+3) = -23, mod7 = 5


you have to get a positive integer for the remainder.

-16 divided by 7 could be -2 with a remainder -2, but in order to make it positive, it would be -3 remainder 5. 7*-3 = -21 +5 = 16.
Slithe
Profile Blog Joined February 2007
United States985 Posts
September 09 2010 23:11 GMT
#132
lol I think this thread has degraded to the point where people cannot even agree on how modular arithmetic works.

Also, -21 +5 = -16, not 16.

Am I getting trolled here?
BottleAbuser
Profile Blog Joined December 2007
Korea (South)1888 Posts
Last Edited: 2010-09-09 23:20:55
September 09 2010 23:20 GMT
#133
lulz.

phant, mod works like this: If you have x % y = z, then that means

y * c + z = x, for some integer c.

So, if we are looking at -16 % 7 = 5, let's verify that it works.

7 * -3 + 5 = -21 + 5 = -16, so yes it works. (we can use -3 because -3 is an integer.)
Compilers are like boyfriends, you miss a period and they go crazy on you.
Phant
Profile Joined August 2010
United States737 Posts
Last Edited: 2010-09-09 23:54:15
September 09 2010 23:47 GMT
#134
On September 10 2010 08:20 BottleAbuser wrote:
lulz.

phant, mod works like this: If you have x % y = z, then that means

y * c + z = x, for some integer c.

So, if we are looking at -16 % 7 = 5, let's verify that it works.

7 * -3 + 5 = -21 + 5 = -16, so yes it works. (we can use -3 because -3 is an integer.)


which...is exactly what i was saying. the mod function finds the remainder, of course you can define the remainder in many ways, but in most cases like this you want it to be positive.

edit: oh I see, I forgot to throw a negative sign on 16, typo on my part.

2nd edit, I also just noticed I quoted the wrong post, wow i am not on top of things today, I was responding to the person who you quoted, Slithe
Muff2n
Profile Blog Joined March 2009
United Kingdom250 Posts
September 10 2010 06:41 GMT
#135
Bottleabuser has put it nicely ty.

Now I just need to become a little more happy with mod (first time I saw the % I thought the guy must have miss-pressed / or ^ or something lol)
garbanzo
Profile Joined October 2009
United States4046 Posts
Last Edited: 2010-09-10 16:56:06
September 10 2010 16:54 GMT
#136
This problem is pretty interesting. It took my roommates a bit of time to figure out, but in hindsight it's really simple (which is why it's interesting). Basically you just make a group out of the hat colors and the prisoners need to come to an agreement of what function to apply to the elements. In the case of the solution, they decide that they should add up all the group elements (hat colors) that they see. But really "adding" can be any group operator. In the case of me and my roommates we ended up with a multiplicative group.

Since this is a group, the result is an element of the group. So each person just has to account for one element of the group. This way you're guaranteed that someone is right. It doesn't work if there are more hat colors than prisoners because you can never account for every element. The result might map to a different element that someone isn't guessing. Obviously this will still work if there are more prisoners than colors because you can just make up colors to fill in the empty space.

But is there a different solution that would maximize the number of correct guesses if there are less hat colors?
Even during difficult times, when I sat down to play the game, there were times where it felt like god has descended down and played [for me].
Prev 1 5 6 7 All
Please log in or register to reply.
Live Events Refresh
Next event in 3h 33m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
UpATreeSC 138
ZombieGrub131
JuggernautJason80
ProTech66
StarCraft: Brood War
NaDa 11
League of Legends
Grubby3480
Dendi1258
Counter-Strike
fl0m1396
Fnx 1269
Stewie2K661
sgares82
Super Smash Bros
Chillindude22
Heroes of the Storm
Liquid`Hasu579
Khaldor144
Other Games
summit1g9243
Beastyqt665
mouzStarbuck321
C9.Mang0293
B2W.Neo181
elazer124
Sick70
Trikslyr62
Organizations
Other Games
gamesdonequick44775
BasetradeTV47
StarCraft 2
angryscii 36
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 21 non-featured ]
StarCraft 2
• davetesta13
• Reevou 8
• LaughNgamezSOOP
• sooper7s
• AfreecaTV YouTube
• intothetv
• Migwel
• Kozan
• IndyKCrew
StarCraft: Brood War
• RayReign 70
• Eskiya23 17
• FirePhoenix6
• STPLYoutube
• ZZZeroYoutube
• BSLYoutube
Dota 2
• masondota22458
• Ler93
League of Legends
• Jankos1847
• TFBlade1032
Other Games
• imaqtpie1780
• Shiphtur614
Upcoming Events
Replay Cast
3h 33m
RSL Revival
13h 33m
ByuN vs SHIN
Clem vs Reynor
OSC
16h 33m
Replay Cast
1d 3h
RSL Revival
1d 13h
Classic vs Cure
FEL
1d 19h
OSC
1d 23h
RSL Revival
2 days
FEL
2 days
FEL
2 days
[ Show More ]
CSO Cup
2 days
BSL20 Non-Korean Champi…
2 days
Bonyth vs QiaoGege
Dewalt vs Fengzi
Hawk vs Zhanhun
Sziky vs Mihu
Mihu vs QiaoGege
Zhanhun vs Sziky
Fengzi vs Hawk
Sparkling Tuna Cup
3 days
RSL Revival
3 days
FEL
3 days
BSL20 Non-Korean Champi…
3 days
Bonyth vs Dewalt
QiaoGege vs Dewalt
Hawk vs Bonyth
Sziky vs Fengzi
Mihu vs Zhanhun
QiaoGege vs Zhanhun
Fengzi vs Mihu
Replay Cast
5 days
Liquipedia Results

Completed

Proleague 2025-07-07
HSC XXVII
Heroes 10 EU

Ongoing

JPL Season 2
BSL 2v2 Season 3
Acropolis #3
KCM Race Survival 2025 Season 2
CSL 17: 2025 SUMMER
Copa Latinoamericana 4
Jiahua Invitational
Championship of Russia 2025
RSL Revival: Season 1
Murky Cup #2
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025
PGL Astana 2025
Asian Champions League '25
BLAST Rivals Spring 2025
MESA Nomadic Masters
CCT Season 2 Global Finals
IEM Melbourne 2025

Upcoming

2025 ACS Season 2: Qualifier
CSLPRO Last Chance 2025
CSL Xiamen Invitational
CSL Xiamen Invitational: ShowMatche
2025 ACS Season 2
CSLPRO Chat StarLAN 3
K-Championship
uThermal 2v2 Main Event
SEL Season 2 Championship
FEL Cracov 2025
Esports World Cup 2025
Underdog Cup #2
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.