• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EST 03:03
CET 09:03
KST 17:03
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
Behind the Blue - Team Liquid History Book15Clem wins HomeStory Cup 289HomeStory Cup 28 - Info & Preview13Rongyi Cup S3 - Preview & Info8herO wins SC2 All-Star Invitational14
Community News
LiuLi Cup: 2025 Grand Finals (Feb 10-16)12Weekly Cups (Feb 2-8): Classic, Solar, MaxPax win2Nexon's StarCraft game could be FPS, led by UMS maker8PIG STY FESTIVAL 7.0! (19 Feb - 1 Mar)12Weekly Cups (Jan 26-Feb 1): herO, Clem, ByuN, Classic win2
StarCraft 2
General
Nexon's StarCraft game could be FPS, led by UMS maker How do you think the 5.0.15 balance patch (Oct 2025) for StarCraft II has affected the game? Behind the Blue - Team Liquid History Book Weekly Cups (Jan 12-18): herO, MaxPax, Solar win Rongyi Cup S3 - Preview & Info
Tourneys
RSL Revival: Season 4 Korea Qualifier (Feb 14) LiuLi Cup: 2025 Grand Finals (Feb 10-16) PIG STY FESTIVAL 7.0! (19 Feb - 1 Mar) Sparkling Tuna Cup - Weekly Open Tournament RSL Season 4 announced for March-April
Strategy
Custom Maps
Map Editor closed ? [A] Starcraft Sound Mod
External Content
The PondCast: SC2 News & Results Mutation # 512 Overclocked Mutation # 511 Temple of Rebirth Mutation # 510 Safety Violation
Brood War
General
ACS replaced by "ASL Season Open" - Starts 21/02 Gypsy to Korea Liquipedia.net NEEDS editors for Brood War Recent recommended BW games [ASL21] Potential Map Candidates
Tourneys
Escore Tournament StarCraft Season 1 [Megathread] Daily Proleagues Small VOD Thread 2.0 KCM Race Survival 2026 Season 1
Strategy
Fighting Spirit mining rates Zealot bombing is no longer popular? Simple Questions, Simple Answers Current Meta
Other Games
General Games
Nintendo Switch Thread Diablo 2 thread Battle Aces/David Kim RTS Megathread ZeroSpace Megathread EVE Corporation
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
Mafia Game Mode Feedback/Ideas Vanilla Mini Mafia TL Mafia Community Thread
Community
General
US Politics Mega-thread European Politico-economics QA Mega-thread Ask and answer stupid questions here! Russo-Ukrainian War Thread Sex and weight loss
Fan Clubs
The herO Fan Club! The IdrA Fan Club
Media & Entertainment
Anime Discussion Thread [Manga] One Piece
Sports
2024 - 2026 Football Thread
World Cup 2022
Tech Support
TL Community
The Automated Ban List
Blogs
ADHD And Gaming Addiction…
TrAiDoS
My 2025 Magic: The Gathering…
DARKING
Life Update and thoughts.
FuDDx
How do archons sleep?
8882
Customize Sidebar...

Website Feedback

Closed Threads



Active: 3793 users

Differential equations Oddity/Question

Blogs > Sadist
Post a Reply
1 2 Next All
Sadist
Profile Blog Joined October 2002
United States7323 Posts
Last Edited: 2009-11-23 16:51:25
November 23 2009 16:49 GMT
#1
Ive seen one of my TA's as well as my professor do this just the other day and I havent come across it before or at least I dont recall.

Heres an example of it from my Fluids Course.


[image loading]


obviously both sides were integrated twice to come up with the answer but I am curious as to what rule allows this to be done. I had messed this up on a quiz where we had to prove something the other day because i tried separation of variables which must not work for 2nd Order DE's or something.

I wouldnt consider my math background strong even though ive been through Differential Equations and a math course for engineers which is essentially Diff EQ's again. I dont recall seeing an equation like this in Diff Eq. Could anyone explain this to me?

How do you go from where you are to where you want to be? I think you have to have an enthusiasm for life. You have to have a dream, a goal and you have to be willing to work for it. Jim Valvano
Zortch
Profile Blog Joined January 2008
Canada635 Posts
November 23 2009 16:54 GMT
#2
This is just indefinite integrals.

Take the first equation and integrate both side with respect to y and you get:

d/dy=-Cy+C1

Then integrating both sides again with respect to y:

d2/dy2=-1/2Cy^2+C1y+C2

This is all the possible functions whose second derivative with respect to y is -C.
Respect is everything. ~ARchon
Sadist
Profile Blog Joined October 2002
United States7323 Posts
November 23 2009 16:59 GMT
#3
On November 24 2009 01:54 Zortch wrote:
This is just indefinite integrals.

Take the first equation and integrate both side with respect to y and you get:

d/dy=-Cy+C1

Then integrating both sides again with respect to y:

d2/dy2=-1/2Cy^2+C1y+C2

This is all the possible functions whose second derivative with respect to y is -C.



so you know its indefinate integrals because theres no other variable in the equation?
How do you go from where you are to where you want to be? I think you have to have an enthusiasm for life. You have to have a dream, a goal and you have to be willing to work for it. Jim Valvano
BloodDrunK
Profile Blog Joined August 2009
Bangladesh2767 Posts
November 23 2009 17:01 GMT
#4
On November 24 2009 01:54 Zortch wrote:
This is just indefinite integrals.

Take the first equation and integrate both side with respect to y and you get:

d/dy=-Cy+C1

Then integrating both sides again with respect to y:

d2/dy2=-1/2Cy^2+C1y+C2

This is all the possible functions whose second derivative with respect to y is -C.


He pretty much summed it up himself.
You have the power to create your own destiny.
Zortch
Profile Blog Joined January 2008
Canada635 Posts
November 23 2009 17:03 GMT
#5
Its an indefinite integral as opposed to a definite integral because of the arbitraty constants.

But what was the original problem?

Was it this:
Solve d2y/dy2=-C for y?

because then just integrate both side w/r y twice and poof!

This is just basic calculus, I'm not sure what the question is. (not to sound snooty or anything)
Respect is everything. ~ARchon
Sadist
Profile Blog Joined October 2002
United States7323 Posts
Last Edited: 2009-11-23 17:12:05
November 23 2009 17:11 GMT
#6
On November 24 2009 02:03 Zortch wrote:
Its an indefinite integral as opposed to a definite integral because of the arbitraty constants.

But what was the original problem?

Was it this:
Solve d2y/dy2=-C for y?

because then just integrate both side w/r y twice and poof!

This is just basic calculus, I'm not sure what the question is. (not to sound snooty or anything)



Well the original problem not the one i provided had to do with finding the shear center of a beam or something. I cant find the specific problem atm. The problem I posted was given as a velocity field and we integrated to substitute into other equations etc. I was just curious because I dont remember being able to integrate both sides like that. I Specifically remember doing separation of variables with just dy/dx even with only one variable in the equation. I realize now that it comes out to be the same thing as integrating both sides as is. I guess I want to know if I can conclude that I only have to do separation of variables if 2 variables are present in the equation. If not I can always just integrate both sides?


I guess im wondering why I was told to do problems like this that were first order by separation of variables even though its obvious now that i dont have to.
How do you go from where you are to where you want to be? I think you have to have an enthusiasm for life. You have to have a dream, a goal and you have to be willing to work for it. Jim Valvano
nosliw
Profile Blog Joined December 2008
United States2716 Posts
Last Edited: 2009-11-23 17:13:20
November 23 2009 17:11 GMT
#7
You are assuming that
1. C is a constant w.r.t. y
2. u is a function of y only (hence the "du/dy" instead of "partial u/partial y")
Zortch
Profile Blog Joined January 2008
Canada635 Posts
November 23 2009 17:20 GMT
#8
On November 24 2009 02:11 nosliw wrote:
You are assuming that
1. C is a constant w.r.t. y
2. u is a function of y only (hence the "du/dy" instead of "partial u/partial y")


Ah, yes this is true. Good point.

In general, if you have:

d^nu(y)/dy^n=f(y), then just integrate n times on both sides to get u(y).

Thats just exactly what that equation means.
Respect is everything. ~ARchon
Pseudo_Utopia
Profile Blog Joined December 2002
Canada827 Posts
November 23 2009 17:22 GMT
#9
Just a shot in the dark, but maybe try to keep in mind that d2u/dy2 is in fact d(du/dy)/dy. It should seem clearer that you can then go integrate d(du/dy) = -Cdy which gives du/dy = -Cy + C_1 and from there it should be clear where to go.
Retired SchiSm[LighT]
ZBiR
Profile Blog Joined August 2003
Poland1092 Posts
November 23 2009 17:23 GMT
#10
you can multiply both sides by dy2 if you want
d2u=-C*dy2
d(du)=-C*dy*dy
then integrate both sides with indefinite boundaries (remember that du on the left side acts as a variable now, and integrated function =1):
du+D1=-C*y*dy+D2
since D1 and D2 are any numbers, these can be written as one symbol C1=D2-D1:
du=-C*y*dy+C1
again integrate with indefinite boundaries, this time left side's variable is u not du
u+D3=-C*y*y/2+C1*y+D4
then we take C2=D4-D3
u=-C*y*y/2+C1*y+C2

that's seroiusly one of the easiest diff eqs i've ever seen, what kind of equations did you have in those previous courses?
Luddite
Profile Blog Joined April 2007
United States2315 Posts
November 23 2009 17:24 GMT
#11
LOL that isn't even a differential equation. It's just basic calculus.
Can't believe I'm still here playing this same game
Sadist
Profile Blog Joined October 2002
United States7323 Posts
November 23 2009 17:29 GMT
#12
On November 24 2009 02:23 ZBiR wrote:
you can multiply both sides by dy2 if you want
d2u=-C*dy2
d(du)=-C*dy*dy
then integrate both sides with indefinite boundaries (remember that du on the left side acts as a variable now, and integrated function =1):
du+D1=-C*y*dy+D2
since D1 and D2 are any numbers, these can be written as one symbol C1=D2-D1:
du=-C*y*dy+C1
again integrate with indefinite boundaries, this time left side's variable is u not du
u+D3=-C*y*y/2+C1*y+D4
then we take C2=D4-D3
u=-C*y*y/2+C1*y+C2

that's seroiusly one of the easiest diff eqs i've ever seen, what kind of equations did you have in those previous courses?




Obviously i misunderstood something.

I know how to use bernoulli, laplace transforms, etc. It must be one of those that are so simple i didnt recognize it =-)

At the core of this though is that I was taught (in physics mind you) to do a simple dy/dx = Cy equation by separation of variables and im wondering why. Thats where the confusion comes from.
How do you go from where you are to where you want to be? I think you have to have an enthusiasm for life. You have to have a dream, a goal and you have to be willing to work for it. Jim Valvano
ZBiR
Profile Blog Joined August 2003
Poland1092 Posts
November 23 2009 17:31 GMT
#13
On November 24 2009 02:29 Sadist wrote:
Show nested quote +
On November 24 2009 02:23 ZBiR wrote:
you can multiply both sides by dy2 if you want
d2u=-C*dy2
d(du)=-C*dy*dy
then integrate both sides with indefinite boundaries (remember that du on the left side acts as a variable now, and integrated function =1):
du+D1=-C*y*dy+D2
since D1 and D2 are any numbers, these can be written as one symbol C1=D2-D1:
du=-C*y*dy+C1
again integrate with indefinite boundaries, this time left side's variable is u not du
u+D3=-C*y*y/2+C1*y+D4
then we take C2=D4-D3
u=-C*y*y/2+C1*y+C2

that's seroiusly one of the easiest diff eqs i've ever seen, what kind of equations did you have in those previous courses?




Obviously i misunderstood something.

I know how to use bernoulli, laplace transforms, etc. It must be one of those that are so simple i didnt recognize it =-)

At the core of this though is that I was taught (in physics mind you) to do a simple dy/dx = Cy equation by separation of variables and im wondering why. Thats where the confusion comes from.

Yeah, that must be the case
Purind
Profile Blog Joined April 2004
Canada3562 Posts
November 23 2009 17:41 GMT
#14
On November 24 2009 01:49 Sadist wrote:
obviously both sides were integrated twice to come up with the answer but I am curious as to what rule allows this to be done. I had messed this up on a quiz where we had to prove something the other day because i tried separation of variables which must not work for 2nd Order DE's or something.


Did the equation look something like this?
d2y/dx^2 + C dy/dx + y = 0 (a general 2nd order ODE)

You can't separate the variables here. Just try it. You'll get confused trying to separate them
Trucy Wright is hot
quirinus
Profile Blog Joined May 2007
Croatia2489 Posts
Last Edited: 2009-11-23 18:06:15
November 23 2009 18:01 GMT
#15
On November 24 2009 02:23 ZBiR wrote:
you can multiply both sides by dy2 if you want
d2u=-C*dy2
d(du)=-C*dy*dy
then integrate both sides with indefinite boundaries (remember that du on the left side acts as a variable now, and integrated function =1):
du+D1=-C*y*dy+D2
since D1 and D2 are any numbers, these can be written as one symbol C1=D2-D1:
du=-C*y*dy+C1
again integrate with indefinite boundaries, this time left side's variable is u not du
u+D3=-C*y*y/2+C1*y+D4
then we take C2=D4-D3
u=-C*y*y/2+C1*y+C2

that's seroiusly one of the easiest diff eqs i've ever seen, what kind of equations did you have in those previous courses?


I like this approach the most, since it doesn't skip on some parts (both sides get a constant) like they do in some books. But fro practical use, it's better to "just integrate and put a constant".


Well, to be precise (if I remember correctly), these actually are definite boundary integrals (as all indefinite integrals are), but they are from some constant/fixed value to eg. u or y. So one boundary is a definite constant (those are the constants that you introduce, ie. C1, D1, etc.) and the other is an indefinite variable (so the upper boundary is not fixed). I think that's how it got it's name.



PS: I think you can only separate functions that depend on 2 variables. This function that you wrote depends only on one. I think that what you're refering to is called differently (separating du and dy and all things depending on u and y on different sides). But I might be wrong, it's been a long time.
All candles lit within him, and there was purity. | First auto-promoted BW LP editor.
Sadist
Profile Blog Joined October 2002
United States7323 Posts
November 23 2009 18:04 GMT
#16
On November 24 2009 02:41 Purind wrote:
Show nested quote +
On November 24 2009 01:49 Sadist wrote:
obviously both sides were integrated twice to come up with the answer but I am curious as to what rule allows this to be done. I had messed this up on a quiz where we had to prove something the other day because i tried separation of variables which must not work for 2nd Order DE's or something.


Did the equation look something like this?
d2y/dx^2 + C dy/dx + y = 0 (a general 2nd order ODE)

You can't separate the variables here. Just try it. You'll get confused trying to separate them



na I guess it wasnt a differential eq =-) I wouldnt do separation of variables on something like that.

Physics just fucked me up and had me using separation of variables when I didnt need to but it ended up working out in the end anyway which is odd.
How do you go from where you are to where you want to be? I think you have to have an enthusiasm for life. You have to have a dream, a goal and you have to be willing to work for it. Jim Valvano
gyth
Profile Blog Joined September 2009
657 Posts
November 24 2009 04:30 GMT
#17
At the core of this though is that I was taught (in physics mind you) to do a simple dy/dx = Cy equation by separation of variables and im wondering why.

How else would you solve that equation?
The plural of anecdote is not data.
Sadist
Profile Blog Joined October 2002
United States7323 Posts
November 25 2009 03:59 GMT
#18
On November 24 2009 13:30 gyth wrote:
Show nested quote +
At the core of this though is that I was taught (in physics mind you) to do a simple dy/dx = Cy equation by separation of variables and im wondering why.

How else would you solve that equation?



apparently just integrate both sides without dividing multiplying by dx? :d
How do you go from where you are to where you want to be? I think you have to have an enthusiasm for life. You have to have a dream, a goal and you have to be willing to work for it. Jim Valvano
Zortch
Profile Blog Joined January 2008
Canada635 Posts
November 25 2009 04:02 GMT
#19
I'm not sure why you think of it that way.

You've got that -C is the second derivative of a function u(y) with respect to y.
Agree?

So by the fundamental theorem of calc (integration and derivative are inverse operations) to solve for u(y) just integrate it with respect to y twice.
Respect is everything. ~ARchon
gyth
Profile Blog Joined September 2009
657 Posts
November 26 2009 17:44 GMT
#20
apparently just integrate both sides without dividing multiplying by dx? :d

You _do_ need to use separation of variables to solve exponential growth.

ddu/ddy = -C is already as separate as it needs to be.

If it had been x'' = -9.8m/s^2, could you have come up with x = x0 + v0t -4.9 t^s?
The plural of anecdote is not data.
1 2 Next All
Please log in or register to reply.
Live Events Refresh
Next event in 1h 57m
[ Submit Event ]
Live Streams
Refresh
StarCraft: Brood War
Bisu 7450
Mong 435
Leta 252
Tasteless 199
Larva 192
ToSsGirL 39
sorry 34
Sharp 27
zelot 25
NaDa 19
[ Show more ]
sSak 16
GoRush 11
soO 8
League of Legends
JimRising 665
Counter-Strike
kRYSTAL_3
Super Smash Bros
Mew2King174
Heroes of the Storm
Khaldor136
Other Games
gofns8016
summit1g4052
C9.Mang0444
Happy296
ceh9254
Organizations
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 14 non-featured ]
StarCraft 2
• Berry_CruncH36
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• iopq 11
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
League of Legends
• Stunt506
• Jankos398
Upcoming Events
Escore
1h 57m
LiuLi Cup
2h 57m
Serral vs Zoun
Cure vs Classic
Big Brain Bouts
8h 57m
ByuN vs GgMaChine
Serral vs Jumy
RSL Revival
18h 57m
RSL Revival
23h 57m
LiuLi Cup
1d 2h
uThermal 2v2 Circuit
1d 3h
RSL Revival
1d 9h
Replay Cast
1d 15h
Sparkling Tuna Cup
2 days
[ Show More ]
LiuLi Cup
2 days
Replay Cast
2 days
Replay Cast
3 days
LiuLi Cup
3 days
Wardi Open
3 days
Monday Night Weeklies
3 days
OSC
3 days
WardiTV Winter Champion…
4 days
Replay Cast
5 days
WardiTV Winter Champion…
5 days
Replay Cast
5 days
The PondCast
6 days
KCM Race Survival
6 days
WardiTV Winter Champion…
6 days
Replay Cast
6 days
Liquipedia Results

Completed

Proleague 2026-02-10
Rongyi Cup S3
Underdog Cup #3

Ongoing

KCM Race Survival 2026 Season 1
Escore Tournament S1: W8
LiuLi Cup: 2025 Grand Finals
Nations Cup 2026
IEM Kraków 2026
BLAST Bounty Winter 2026
BLAST Bounty Winter Qual
eXTREMESLAND 2025
SL Budapest Major 2025

Upcoming

[S:21] ASL SEASON OPEN 1st Round
[S:21] ASL SEASON OPEN 1st Round Qualifier
[S:21] ASL SEASON OPEN 2nd Round
[S:21] ASL SEASON OPEN 2nd Round Qualifier
Acropolis #4
IPSL Spring 2026
HSC XXIX
uThermal 2v2 2026 Main Event
Bellum Gens Elite Stara Zagora 2026
RSL Revival: Season 4
WardiTV Winter 2026
CCT Season 3 Global Finals
FISSURE Playground #3
IEM Rio 2026
PGL Bucharest 2026
Stake Ranked Episode 1
BLAST Open Spring 2026
ESL Pro League Season 23
ESL Pro League Season 23
PGL Cluj-Napoca 2026
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2026 TLnet. All Rights Reserved.