• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 16:13
CEST 22:13
KST 05:13
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
uThermal's 2v2 Tour: $15,000 Main Event5Serral wins EWC 202543Tournament Spotlight: FEL Cracow 202510Power Rank - Esports World Cup 202580RSL Season 1 - Final Week9
Community News
Weekly Cups (Jul 28-Aug 3): herO doubles up6LiuLi Cup - August 2025 Tournaments5[BSL 2025] H2 - Team Wars, Weeklies & SB Ladder10EWC 2025 - Replay Pack4Google Play ASL (Season 20) Announced63
StarCraft 2
General
Rogue Talks: "Koreans could dominate again" uThermal's 2v2 Tour: $15,000 Main Event The GOAT ranking of GOAT rankings RSL Revival patreon money discussion thread Official Ladder Map Pool Update (April 28, 2025)
Tourneys
SC2's Safe House 2 - October 18 & 19 LiuLi Cup - August 2025 Tournaments $5,100+ SEL Season 2 Championship (SC: Evo) WardiTV Mondays RSL Season 2 Qualifier Links and Dates
Strategy
Custom Maps
External Content
Mutation # 485 Death from Below Mutation # 484 Magnetic Pull Mutation #239 Bad Weather Mutation # 483 Kill Bot Wars
Brood War
General
ASL Season 20 Ro24 Groups BGH Auto Balance -> http://bghmmr.eu/ StarCraft player reflex TE scores BW General Discussion Google Play ASL (Season 20) Announced
Tourneys
KCM 2025 Season 3 Small VOD Thread 2.0 [Megathread] Daily Proleagues [ASL20] Online Qualifiers Day 2
Strategy
Fighting Spirit mining rates [G] Mineral Boosting Simple Questions, Simple Answers Muta micro map competition
Other Games
General Games
Nintendo Switch Thread Stormgate/Frost Giant Megathread Total Annihilation Server - TAForever Beyond All Reason [MMORPG] Tree of Savior (Successor of Ragnarok)
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
US Politics Mega-thread Russo-Ukrainian War Thread Things Aren’t Peaceful in Palestine The Games Industry And ATVI European Politico-economics QA Mega-thread
Fan Clubs
INnoVation Fan Club SKT1 Classic Fan Club!
Media & Entertainment
[\m/] Heavy Metal Thread [Manga] One Piece Movie Discussion! Anime Discussion Thread Korean Music Discussion
Sports
2024 - 2025 Football Thread Formula 1 Discussion TeamLiquid Health and Fitness Initiative For 2023
World Cup 2022
Tech Support
Gtx660 graphics card replacement Installation of Windows 10 suck at "just a moment" Computer Build, Upgrade & Buying Resource Thread
TL Community
TeamLiquid Team Shirt On Sale The Automated Ban List
Blogs
Gaming After Dark: Poor Slee…
TrAiDoS
[Girl blog} My fema…
artosisisthebest
Sharpening the Filtration…
frozenclaw
ASL S20 English Commentary…
namkraft
momentary artworks from des…
tankgirl
from making sc maps to makin…
Husyelt
Customize Sidebar...

Website Feedback

Closed Threads



Active: 834 users

Brainteaser for TeamLiquid! - Page 9

Forum Index > General Forum
Post a Reply
Prev 1 7 8 9 10 11 23 Next All
qrs
Profile Blog Joined December 2007
United States3637 Posts
June 10 2011 06:53 GMT
#161
On June 10 2011 15:36 Tektos wrote:
To everyone who says 1/5 is the correct answer:

Are you assuming getting Z P is a different event as getting P Z?
Well, yes, because they are different events, aren't they?

I play 2 games as random, at least one is zerg. The possible outcomes given this constraint are:

I play 2 games as zerg
I play 1 game as zerg and 1 as protoss
I play 1 game as zerg and 1 as terran


3 possible outcomes, playing zerg twice is one of the possible outcomes:
1 / 3

I play 2 games as Zerg
I play game 1 as Zerg and game 2 as Protoss.
I play game 1 as Protoss and game 2 as Zerg.
I play game 1 as Zerg and game 2 as Terran.
I play game 1 as Terran and game 2 as Zerg.

5 possible outcomes; playing Zerg twice is one of the possible outcomes.

Why aren't you counting ZP and PZ separately?
'As per the American Heart Association, the beat of the Bee Gees song "Stayin' Alive" provides an ideal rhythm in terms of beats per minute to use for hands-only CPR. One can also hum Queen's "Another One Bites The Dust".' —Wikipedia
BlackJack
Profile Blog Joined June 2003
United States10508 Posts
June 10 2011 06:54 GMT
#162
Here's a similar problem that my stats teacher gave me some years ago. It's something along these lines.

You are at a party chatting with a guest and they share that they have 2 children. Right after they tell you this a girl walks up to the person you are talking to and the person says "oh, here is my daughter now." The question is what is the probability that the other child is also a girl. The answer I was given was 1/3 for the same reason, 3 possibilities, BG, GB, and GG so 1 out of 3, right?

Here's my problem.. The fact that the girl walked up is a completely random occurrence. It could have just as easily been a boy. If it was a boy, you would also say that the chance of the person having 2 boys is 1/3. Now you must be saying that the probability the unknown offspring is the opposite gender of the first offspring you see is 2/3. We know that the probability of having 2 different gender children vs 2 same-sex children is 50-50. What am I missing?
darmousseh
Profile Blog Joined May 2010
United States3437 Posts
June 10 2011 06:55 GMT
#163
This is very simple as many others have said. Given that I played either game 1 as zerg or game 2 as zerg, what are the odds that i played zerg two times in a row.

First off, there are 9 possibile combinations pp pz pt tp tz tt zp zz zt and only in 1 scenario is zz. Get rid of any scenarios in which you don't play zerg and there are 5 left, thus 1/5.

There are many ways to do this problem and they all result in 1/5.
Developer for http://mtgfiddle.com
qrs
Profile Blog Joined December 2007
United States3637 Posts
Last Edited: 2011-06-10 06:57:53
June 10 2011 06:57 GMT
#164
On June 10 2011 15:51 Tektos wrote:
Show nested quote +
On June 10 2011 15:47 OneOther wrote:
Haha wow there seems to be a lot of debate over a simple conditional probability problem. Yes, the wording was a little bit unclear, but his edits clarified what he was talking about. Some people seem to just not understand the concept of a conditional probability, or are still misreading the problem.

"I played two games as random today. In at least one of the games I was Zerg. (NOT the first game, but just in one of the two - this is an important distinction that the OP was a little bit unclear on at first but wasn't necessarily wrong either). Given this, what is the probability that I played both games as Zerg? (Not what the probability of getting Zerg in the second game was)"

Conditional probability P (A l B) = P(A and B) / P(A)
(Probability of getting Zerg in two games given Zerg in at least one game) / (Probability of getting Zerg in one game)

The possible combinations are ZZ, ZP, ZT, TZ, PZ, PP, TT, TP, PT.
Probability of getting Zerg in one game = 5/9 (since PP, TT, TP and PT are eliminated)
Given this probability, the probability of getting another Zerg = 1/9 (only ZZ remains out of the 9)

Therefore, using the equation, we arrive at 1/9 divided by 5/9 = 9/40, or 1/5.


ZP and PZ are the same outcome (playing once as zerg and once as protoss)
TZ and ZT are the same outcome (playing once as zerg and once as terran)

That consolidates your possible outcomes down to 3 results, giving 1/3 chance that the other game will be zerg.
By your reasoning, I can prove to you that you have a fifty percent chance of rolling a 1, using a fair die.

There are two possibilities: you roll 1 or you don't roll 1. 2, 3, 4, 5, 6 are the same result: not 1. That consolidates your possible outcomes down to 2 results, giving 1/2 chance that you roll a 1.

You see the flaw in this, don't you?
'As per the American Heart Association, the beat of the Bee Gees song "Stayin' Alive" provides an ideal rhythm in terms of beats per minute to use for hands-only CPR. One can also hum Queen's "Another One Bites The Dust".' —Wikipedia
Tektos
Profile Joined November 2010
Australia1321 Posts
June 10 2011 06:57 GMT
#165
On June 10 2011 15:52 Stropheum wrote:
Since the probability of getting zerg in 1 game is 1/3, getting zerg in 2 games = 2/6, which simplifies to 1/3 obviously, but is needed for the next step.
Since you played 1 game already and got zerg 1 time, your probability for 2 zerg games remains 2/6, yet you factor in that you've already played one game, reducing it to 2/5, and you factor in the fact that you've gotten zerg, making the probability 1/5 that you will get zerg a second time.
Do i win?


No the probability of getting zerg in two consecutive games is 1/3 * 1/3 = 1/9
EmeraldSparks
Profile Blog Joined January 2008
United States1451 Posts
June 10 2011 06:58 GMT
#166
On June 10 2011 15:17 Tektos wrote:
Show nested quote +
On June 10 2011 15:12 EmeraldSparks wrote:
On June 10 2011 10:11 theDreamStick wrote:
It is correct that I am asking a conditional probability question:
Given that at least one of my games was Zerg, what is the probability that both of my games are zerg.

It's either 100%, or 0%, depending on whether or not both games were zerg.

I'll give you a puzzle: I either ate a sandwich today, or I didn't.

What is the probability that I ate a sandwich?


With the information provided nobody is able to tell you what the probability that you eat a sandwich is, as eating a sandwich vs. not eating a sandwich is not a fixed probability event. Some people eat sandwiches every day, some people eat sandwiches once a week, some people never eat sandwiches. The only information that can be presented is that the probability that it is either of those two events is 100% because the probability of an event added to the compliment of that event is always 100%.

You could, however, give us a various sample of consecutive days stating whether you ate a sandwich on that day or not and an approximate probability to a certain confidence level based on sample size could be predicted provided the event of eating a sandwich is not pattern based.

So it's based on a huge set of assumptions and extra information.

Let's say that it happened like this:

Your friend sits down to watch TLO play a game. He randoms.

He only manages to watch one of the games.

After the game, he tells you, "holy shit, TLO's zerg is fucking awesome."

Or "TLO's protoss is fucking awesome."

Or "TLO's terran is fucking awesome."

Then, he asks you, because he's a clever sadistic bastard,

"What's the chance that TLO was zerg twice?"

Or "What's the chance that TLO was protoss twice?"

Or "What's the chance that TLO was terran twice?"

The answer to the first question is one third.

The answer to the second question is one third.

The answer to the third question is one third.

So the answer is one third if the backstory happened like this. But it's 1/5th if the backstory happened another way, say that your friend is this disgustingly patriotic zerg fanboy.and would only tell you that TLO played a zerg game and he doesn't give a shit about terran or protoss games.

But since you don't know the backstory, you can't answer the question.

The same way you can't answer my question without knowing if I ate a sandwich today.

Solution: + Show Spoiler +
I haven't had a sandwich in weeks.
But why?
OneOther
Profile Blog Joined August 2004
United States10774 Posts
June 10 2011 06:58 GMT
#167
On June 10 2011 15:51 Tektos wrote:
Show nested quote +
On June 10 2011 15:47 OneOther wrote:
Haha wow there seems to be a lot of debate over a simple conditional probability problem. Yes, the wording was a little bit unclear, but his edits clarified what he was talking about. Some people seem to just not understand the concept of a conditional probability, or are still misreading the problem.

"I played two games as random today. In at least one of the games I was Zerg. (NOT the first game, but just in one of the two - this is an important distinction that the OP was a little bit unclear on at first but wasn't necessarily wrong either). Given this, what is the probability that I played both games as Zerg? (Not what the probability of getting Zerg in the second game was)"

Conditional probability P (A l B) = P(A and B) / P(A)
(Probability of getting Zerg in two games given Zerg in at least one game) / (Probability of getting Zerg in one game)

The possible combinations are ZZ, ZP, ZT, TZ, PZ, PP, TT, TP, PT.
Probability of getting Zerg in one game = 5/9 (since PP, TT, TP and PT are eliminated)
Given this probability, the probability of getting another Zerg = 1/9 (only ZZ remains out of the 9)

Therefore, using the equation, we arrive at 1/9 divided by 5/9 = 9/40, or 1/5.


ZP and PZ are the same outcome (playing once as zerg and once as protoss)
TZ and ZT are the same outcome (playing once as zerg and once as terran)

That consolidates your possible outcomes down to 3 results, giving 1/3 chance that the other game will be zerg.

ZP and PZ are different outcomes. TZ and ZT are different outcomes.
Getting a Zerg in the first game and Protoss in the second game is different from getting Protoss in the first game and then Zerg in the second. Same for ZT/TZ.


On June 10 2011 15:51 ZombiesOMG wrote:
Show nested quote +
On June 10 2011 15:47 OneOther wrote:

The possible combinations are ZZ, ZP, ZT, TZ, PZ, PP, TT, TP, PT.
Probability of getting Zerg in one game = 5/9 (since PP, TT, TP and PT are eliminated)
Given this condition, the probability of getting another Zerg = 1/9 (only ZZ remains out of the 9)

Therefore, using the equation, we arrive at 1/9 divided by 5/9 = 9/45, or 1/5.


I just don't understand how ZP and PZ, or TZ and ZT are different. The OP can only be one of 3 races, why does the opponent's race have any bearing at all? Doesn't that invalidate this calculation?

What do you mean? The opponent's races don't have to do anything with the problem.
Tektos
Profile Joined November 2010
Australia1321 Posts
June 10 2011 06:59 GMT
#168
On June 10 2011 15:57 qrs wrote:
Show nested quote +
On June 10 2011 15:51 Tektos wrote:
On June 10 2011 15:47 OneOther wrote:
Haha wow there seems to be a lot of debate over a simple conditional probability problem. Yes, the wording was a little bit unclear, but his edits clarified what he was talking about. Some people seem to just not understand the concept of a conditional probability, or are still misreading the problem.

"I played two games as random today. In at least one of the games I was Zerg. (NOT the first game, but just in one of the two - this is an important distinction that the OP was a little bit unclear on at first but wasn't necessarily wrong either). Given this, what is the probability that I played both games as Zerg? (Not what the probability of getting Zerg in the second game was)"

Conditional probability P (A l B) = P(A and B) / P(A)
(Probability of getting Zerg in two games given Zerg in at least one game) / (Probability of getting Zerg in one game)

The possible combinations are ZZ, ZP, ZT, TZ, PZ, PP, TT, TP, PT.
Probability of getting Zerg in one game = 5/9 (since PP, TT, TP and PT are eliminated)
Given this probability, the probability of getting another Zerg = 1/9 (only ZZ remains out of the 9)

Therefore, using the equation, we arrive at 1/9 divided by 5/9 = 9/40, or 1/5.


ZP and PZ are the same outcome (playing once as zerg and once as protoss)
TZ and ZT are the same outcome (playing once as zerg and once as terran)

That consolidates your possible outcomes down to 3 results, giving 1/3 chance that the other game will be zerg.
By your reasoning, I can prove to you that you have a fifty percent chance of rolling a 1, using a fair die.

There are two possibilities: you roll 1 or you don't roll 1. 2, 3, 4, 5, 6 are the same result: not 1. That consolidates your possible outcomes down to 2 results, giving 1/2 chance that you roll a 1.

You see the flaw in this, don't you?


ZP vs. PZ is comepletely different from P(A) vs. P(not A) you seem to have no clue what you're doing.
darmousseh
Profile Blog Joined May 2010
United States3437 Posts
June 10 2011 06:59 GMT
#169
The correct way to phrase the problem is

"Given that I played 2 games and that at least one of them was played as zerg, what is the probability that both were played as zerg?"
Developer for http://mtgfiddle.com
EmeraldSparks
Profile Blog Joined January 2008
United States1451 Posts
June 10 2011 07:00 GMT
#170
On June 10 2011 15:59 darmousseh wrote:
The correct way to phrase the problem is

"Given that I played 2 games and that at least one of them was played as zerg, what is the probability that both were played as zerg?"

100%, if you're Idra.
But why?
Tektos
Profile Joined November 2010
Australia1321 Posts
June 10 2011 07:01 GMT
#171
On June 10 2011 15:58 OneOther wrote:
Show nested quote +
On June 10 2011 15:51 Tektos wrote:
On June 10 2011 15:47 OneOther wrote:
Haha wow there seems to be a lot of debate over a simple conditional probability problem. Yes, the wording was a little bit unclear, but his edits clarified what he was talking about. Some people seem to just not understand the concept of a conditional probability, or are still misreading the problem.

"I played two games as random today. In at least one of the games I was Zerg. (NOT the first game, but just in one of the two - this is an important distinction that the OP was a little bit unclear on at first but wasn't necessarily wrong either). Given this, what is the probability that I played both games as Zerg? (Not what the probability of getting Zerg in the second game was)"

Conditional probability P (A l B) = P(A and B) / P(A)
(Probability of getting Zerg in two games given Zerg in at least one game) / (Probability of getting Zerg in one game)

The possible combinations are ZZ, ZP, ZT, TZ, PZ, PP, TT, TP, PT.
Probability of getting Zerg in one game = 5/9 (since PP, TT, TP and PT are eliminated)
Given this probability, the probability of getting another Zerg = 1/9 (only ZZ remains out of the 9)

Therefore, using the equation, we arrive at 1/9 divided by 5/9 = 9/40, or 1/5.


ZP and PZ are the same outcome (playing once as zerg and once as protoss)
TZ and ZT are the same outcome (playing once as zerg and once as terran)

That consolidates your possible outcomes down to 3 results, giving 1/3 chance that the other game will be zerg.

ZP and PZ are different outcomes. TZ and ZT are different outcomes.
Getting a Zerg in the first game and Protoss in the second game is different from getting Protoss in the first game and then Zerg in the second. Same for ZT/TZ.



No they are the same event because the games are independent. Everyone is confusing dependent event conditional probability with independent event conditional probability.
darmousseh
Profile Blog Joined May 2010
United States3437 Posts
June 10 2011 07:01 GMT
#172
On June 10 2011 16:00 EmeraldSparks wrote:
Show nested quote +
On June 10 2011 15:59 darmousseh wrote:
The correct way to phrase the problem is

"Given that I played 2 games and that at least one of them was played as zerg, what is the probability that both were played as zerg?"

100%, if you're Idra.

I've seen idra offrace as protoss......
Developer for http://mtgfiddle.com
EmeraldSparks
Profile Blog Joined January 2008
United States1451 Posts
June 10 2011 07:02 GMT
#173
On June 10 2011 16:01 darmousseh wrote:
Show nested quote +
On June 10 2011 16:00 EmeraldSparks wrote:
On June 10 2011 15:59 darmousseh wrote:
The correct way to phrase the problem is

"Given that I played 2 games and that at least one of them was played as zerg, what is the probability that both were played as zerg?"

100%, if you're Idra.

I've seen idra offrace as protoss......

Looks like somebody made a bad assumption.

That somebody's me.
But why?
qrs
Profile Blog Joined December 2007
United States3637 Posts
June 10 2011 07:03 GMT
#174
On June 10 2011 15:59 Tektos wrote:
Show nested quote +
On June 10 2011 15:57 qrs wrote:
On June 10 2011 15:51 Tektos wrote:
On June 10 2011 15:47 OneOther wrote:
Haha wow there seems to be a lot of debate over a simple conditional probability problem. Yes, the wording was a little bit unclear, but his edits clarified what he was talking about. Some people seem to just not understand the concept of a conditional probability, or are still misreading the problem.

"I played two games as random today. In at least one of the games I was Zerg. (NOT the first game, but just in one of the two - this is an important distinction that the OP was a little bit unclear on at first but wasn't necessarily wrong either). Given this, what is the probability that I played both games as Zerg? (Not what the probability of getting Zerg in the second game was)"

Conditional probability P (A l B) = P(A and B) / P(A)
(Probability of getting Zerg in two games given Zerg in at least one game) / (Probability of getting Zerg in one game)

The possible combinations are ZZ, ZP, ZT, TZ, PZ, PP, TT, TP, PT.
Probability of getting Zerg in one game = 5/9 (since PP, TT, TP and PT are eliminated)
Given this probability, the probability of getting another Zerg = 1/9 (only ZZ remains out of the 9)

Therefore, using the equation, we arrive at 1/9 divided by 5/9 = 9/40, or 1/5.


ZP and PZ are the same outcome (playing once as zerg and once as protoss)
TZ and ZT are the same outcome (playing once as zerg and once as terran)

That consolidates your possible outcomes down to 3 results, giving 1/3 chance that the other game will be zerg.
By your reasoning, I can prove to you that you have a fifty percent chance of rolling a 1, using a fair die.

There are two possibilities: you roll 1 or you don't roll 1. 2, 3, 4, 5, 6 are the same result: not 1. That consolidates your possible outcomes down to 2 results, giving 1/2 chance that you roll a 1.

You see the flaw in this, don't you?


ZP vs. PZ is comepletely different from P(A) vs. P(not A) you seem to have no clue what you're doing.
What I'm doing is showing how your "consolidation process" can be abused 6 ways till Sunday. You're the one who doesn't seem to know what you're doing.

Playing a Zerg in game 1 and playing a Zerg in game 2 are different, mutually exclusive events. Saying that every event that includes a Zerg is the same event, is precisely as (in)valid as saying that every event that is non-1 is the same event.
'As per the American Heart Association, the beat of the Bee Gees song "Stayin' Alive" provides an ideal rhythm in terms of beats per minute to use for hands-only CPR. One can also hum Queen's "Another One Bites The Dust".' —Wikipedia
Tektos
Profile Joined November 2010
Australia1321 Posts
June 10 2011 07:06 GMT
#175
On June 10 2011 16:03 qrs wrote:
Show nested quote +
On June 10 2011 15:59 Tektos wrote:
On June 10 2011 15:57 qrs wrote:
On June 10 2011 15:51 Tektos wrote:
On June 10 2011 15:47 OneOther wrote:
Haha wow there seems to be a lot of debate over a simple conditional probability problem. Yes, the wording was a little bit unclear, but his edits clarified what he was talking about. Some people seem to just not understand the concept of a conditional probability, or are still misreading the problem.

"I played two games as random today. In at least one of the games I was Zerg. (NOT the first game, but just in one of the two - this is an important distinction that the OP was a little bit unclear on at first but wasn't necessarily wrong either). Given this, what is the probability that I played both games as Zerg? (Not what the probability of getting Zerg in the second game was)"

Conditional probability P (A l B) = P(A and B) / P(A)
(Probability of getting Zerg in two games given Zerg in at least one game) / (Probability of getting Zerg in one game)

The possible combinations are ZZ, ZP, ZT, TZ, PZ, PP, TT, TP, PT.
Probability of getting Zerg in one game = 5/9 (since PP, TT, TP and PT are eliminated)
Given this probability, the probability of getting another Zerg = 1/9 (only ZZ remains out of the 9)

Therefore, using the equation, we arrive at 1/9 divided by 5/9 = 9/40, or 1/5.


ZP and PZ are the same outcome (playing once as zerg and once as protoss)
TZ and ZT are the same outcome (playing once as zerg and once as terran)

That consolidates your possible outcomes down to 3 results, giving 1/3 chance that the other game will be zerg.
By your reasoning, I can prove to you that you have a fifty percent chance of rolling a 1, using a fair die.

There are two possibilities: you roll 1 or you don't roll 1. 2, 3, 4, 5, 6 are the same result: not 1. That consolidates your possible outcomes down to 2 results, giving 1/2 chance that you roll a 1.

You see the flaw in this, don't you?


ZP vs. PZ is comepletely different from P(A) vs. P(not A) you seem to have no clue what you're doing.
What I'm doing is showing how your "consolidation process" can be abused 6 ways till Sunday. You're the one who doesn't seem to know what you're doing.

Playing a Zerg in game 1 and playing a Zerg in game 2 are different, mutually exclusive events. Saying that every event that includes a Zerg is the same event, is precisely as (in)valid as saying that every event that is non-1 is the same event.


No it can't be abused 6 ways till Sunday unless you have no clue about a thing to do with probability. Order of occurrence does not play a factor in independent event conditional probability.
EmeraldSparks
Profile Blog Joined January 2008
United States1451 Posts
June 10 2011 07:07 GMT
#176
ZZ - Your friend reports, "TLO played at least one game as zerg."
ZP - Your friend reports, "TLO played at least one game as zerg."
ZT - Your friend reports, "TLO played at least one game as zerg."
PZ - Your friend reports, "TLO played at least one game as zerg."
TZ - Your friend reports, "TLO played at least one game as zerg."
TT - Your friend goes to the pub.
TP - Your friend goes to the pub.
PT - Your friend goes to the pub.
PP - Your friend goes to the pub.

Your friend asks you, "what is the chance that TLO played both games with the same race."

The answer to the question in this case is 1/5.

ZZ - Your friend reports, "TLO played at least one game as zerg."
ZP - Your friend reports with 50% chance "TLO played at least one game as zerg" and 50% chance "TLO played at least one game as protoss."
ZT - Your friend reports with 50% chance "TLO played at least one game as zerg" and 50% chance "TLO played at least one game as terran."
PZ - Your friend reports with 50% chance "TLO played at least one game as zerg" and 50% chance "TLO played at least one game as protoss."
TZ - Your friend reports with 50% chance "TLO played at least one game as zerg" and 50% chance "TLO played at least one game as terran."
TT - Your friend reports, "TLO played at least one game as terran."
TP - Your friend reports with 50% chance "TLO played at least one game as protoss" and 50% chance "TLO played at least one game as terran."
PT - Your friend reports with 50% chance "TLO played at least one game as protoss" and 50% chance "TLO played at least one game as terran."
PP - Your friend reports, "TLO played at least one game as protoss."

Your friend asks you, "what is the chance that TLO played both games with the same race."

The answer to the question in this case is 1/3.

You have no idea of knowing your friend's method of coming up with the question.

You cannot answer the question without further information.
But why?
qrs
Profile Blog Joined December 2007
United States3637 Posts
June 10 2011 07:08 GMT
#177
On June 10 2011 16:01 Tektos wrote:
No they are the same event because the games are independent. Everyone is confusing dependent event conditional probability with independent event conditional probability.
OK, let's do it this way. Imagine that a bunch of random games are played.

1/9 of them will be ZZ.
2/9 of them will be ZP/PZ
2/9 of them will be ZT/TZ

2/9 of them will be TP/PT
1/9 of them will be PP
1/9 of them will be TT.

Do you agree with the above?

If so, then consider the set of sets of games where at least one Z is played: 1/5 of these are ZZ.
'As per the American Heart Association, the beat of the Bee Gees song "Stayin' Alive" provides an ideal rhythm in terms of beats per minute to use for hands-only CPR. One can also hum Queen's "Another One Bites The Dust".' —Wikipedia
DeltruS
Profile Blog Joined April 2010
Canada2214 Posts
June 10 2011 07:09 GMT
#178
Thank you OneOther. Starcraft themed math makes the mundane fun.
http://grooveshark.com/#/deltrus/music
Ivs
Profile Joined January 2008
Australia139 Posts
June 10 2011 07:10 GMT
#179
On June 10 2011 16:06 Tektos wrote:
Show nested quote +
On June 10 2011 16:03 qrs wrote:
On June 10 2011 15:59 Tektos wrote:
On June 10 2011 15:57 qrs wrote:
On June 10 2011 15:51 Tektos wrote:
On June 10 2011 15:47 OneOther wrote:
Haha wow there seems to be a lot of debate over a simple conditional probability problem. Yes, the wording was a little bit unclear, but his edits clarified what he was talking about. Some people seem to just not understand the concept of a conditional probability, or are still misreading the problem.

"I played two games as random today. In at least one of the games I was Zerg. (NOT the first game, but just in one of the two - this is an important distinction that the OP was a little bit unclear on at first but wasn't necessarily wrong either). Given this, what is the probability that I played both games as Zerg? (Not what the probability of getting Zerg in the second game was)"

Conditional probability P (A l B) = P(A and B) / P(A)
(Probability of getting Zerg in two games given Zerg in at least one game) / (Probability of getting Zerg in one game)

The possible combinations are ZZ, ZP, ZT, TZ, PZ, PP, TT, TP, PT.
Probability of getting Zerg in one game = 5/9 (since PP, TT, TP and PT are eliminated)
Given this probability, the probability of getting another Zerg = 1/9 (only ZZ remains out of the 9)

Therefore, using the equation, we arrive at 1/9 divided by 5/9 = 9/40, or 1/5.


ZP and PZ are the same outcome (playing once as zerg and once as protoss)
TZ and ZT are the same outcome (playing once as zerg and once as terran)

That consolidates your possible outcomes down to 3 results, giving 1/3 chance that the other game will be zerg.
By your reasoning, I can prove to you that you have a fifty percent chance of rolling a 1, using a fair die.

There are two possibilities: you roll 1 or you don't roll 1. 2, 3, 4, 5, 6 are the same result: not 1. That consolidates your possible outcomes down to 2 results, giving 1/2 chance that you roll a 1.

You see the flaw in this, don't you?


ZP vs. PZ is comepletely different from P(A) vs. P(not A) you seem to have no clue what you're doing.
What I'm doing is showing how your "consolidation process" can be abused 6 ways till Sunday. You're the one who doesn't seem to know what you're doing.

Playing a Zerg in game 1 and playing a Zerg in game 2 are different, mutually exclusive events. Saying that every event that includes a Zerg is the same event, is precisely as (in)valid as saying that every event that is non-1 is the same event.


No it can't be abused 6 ways till Sunday unless you have no clue about a thing to do with probability. Order of occurrence does not play a factor in independent event conditional probability.


By your logic, the chance of flipping two coins and get two heads in a row is a 1/3, because the possible outcomes are HH, TT, and HT (which is the same as TH).
Abenson
Profile Blog Joined December 2009
Canada4122 Posts
June 10 2011 07:11 GMT
#180
erp.
1/5 - i don't see how hard this can be lol
All you have to do, if you're confused, is to list out all the possibilities.

As I'm posting right now, 61% have answered 1/3 lol
Prev 1 7 8 9 10 11 23 Next All
Please log in or register to reply.
Live Events Refresh
BSL
20:00
Team Wars - Round 2
Dewalt vs Sziky
ZZZero.O0
LiquipediaDiscussion
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
uThermal 1180
IndyStarCraft 221
SteadfastSC 195
ZombieGrub124
StarCraft: Brood War
Britney 18512
Calm 3004
ggaemo 540
Jaedong 379
Larva 310
actioN 196
TY 72
Aegong 32
Mong 32
NaDa 12
[ Show more ]
yabsab 11
IntoTheRainbow 7
ivOry 3
ZZZero.O 0
Stormgate
JuggernautJason134
RushiSC94
UpATreeSC53
Counter-Strike
Stewie2K119
Heroes of the Storm
Liquid`Hasu514
Khaldor173
Other Games
gofns14256
Grubby2720
fl0m1702
Beastyqt364
KnowMe154
Fuzer 94
oskar89
Livibee73
Trikslyr46
EmSc Tv 19
Sick13
Organizations
Other Games
EmSc Tv 19
StarCraft 2
EmSc2Tv 19
angryscii 14
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 21 non-featured ]
StarCraft 2
• kabyraGe 305
• davetesta27
• tFFMrPink 15
• IndyKCrew
• sooper7s
• Migwel
• AfreecaTV YouTube
• LaughNgamezSOOP
• intothetv
• Kozan
StarCraft: Brood War
• 80smullet 28
• FirePhoenix8
• STPLYoutube
• ZZZeroYoutube
• BSLYoutube
Dota 2
• masondota21415
• WagamamaTV739
League of Legends
• Doublelift1332
• TFBlade1065
Other Games
• imaqtpie1593
• Shiphtur274
Upcoming Events
RSL Revival
5h 47m
RSL Revival
13h 47m
SC Evo League
15h 47m
uThermal 2v2 Circuit
18h 47m
CSO Cup
19h 47m
Sparkling Tuna Cup
1d 13h
uThermal 2v2 Circuit
1d 18h
Wardi Open
2 days
RotterdaM Event
2 days
Replay Cast
3 days
[ Show More ]
RSL Revival
3 days
The PondCast
5 days
Replay Cast
6 days
LiuLi Cup
6 days
Liquipedia Results

Completed

ASL Season 20: Qualifier #2
FEL Cracow 2025
CC Div. A S7

Ongoing

Copa Latinoamericana 4
Jiahua Invitational
BSL 20 Team Wars
KCM Race Survival 2025 Season 3
BSL 21 Qualifiers
uThermal 2v2 Main Event
HCC Europe
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1
BLAST.tv Austin Major 2025

Upcoming

ASL Season 20
CSLPRO Chat StarLAN 3
BSL Season 21
BSL 21 Team A
RSL Revival: Season 2
Maestros of the Game
SEL Season 2 Championship
WardiTV Summer 2025
Thunderpick World Champ.
MESA Nomadic Masters Fall
CS Asia Championships 2025
Roobet Cup 2025
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.