• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 05:45
CEST 11:45
KST 18:45
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
Team Liquid Map Contest #21 - Presented by Monster Energy8uThermal's 2v2 Tour: $15,000 Main Event14Serral wins EWC 202549Tournament Spotlight: FEL Cracow 202510Power Rank - Esports World Cup 202580
Community News
Weekly Cups (Aug 4-10): MaxPax wins a triple6SC2's Safe House 2 - October 18 & 195Weekly Cups (Jul 28-Aug 3): herO doubles up6LiuLi Cup - August 2025 Tournaments5[BSL 2025] H2 - Team Wars, Weeklies & SB Ladder10
StarCraft 2
General
RSL Revival patreon money discussion thread Team Liquid Map Contest #21 - Presented by Monster Energy #1: Maru - Greatest Players of All Time Rogue Talks: "Koreans could dominate again" Weekly Cups (Aug 4-10): MaxPax wins a triple
Tourneys
RSL: Revival, a new crowdfunded tournament series Enki Epic Series #5 - TaeJa vs Classic (SC Evo) Sparkling Tuna Cup - Weekly Open Tournament SEL Masters #5 - Korea vs Russia (SC Evo) ByuN vs TaeJa Bo7 SC Evo Showmatch
Strategy
Custom Maps
External Content
Mutation # 486 Watch the Skies Mutation # 485 Death from Below Mutation # 484 Magnetic Pull Mutation #239 Bad Weather
Brood War
General
BW General Discussion New season has just come in ladder StarCraft player reflex TE scores BSL Polish World Championship 2025 20-21 September BGH Auto Balance -> http://bghmmr.eu/
Tourneys
Cosmonarchy Pro Showmatches KCM 2025 Season 3 [Megathread] Daily Proleagues Small VOD Thread 2.0
Strategy
Simple Questions, Simple Answers Fighting Spirit mining rates [G] Mineral Boosting Muta micro map competition
Other Games
General Games
Stormgate/Frost Giant Megathread Total Annihilation Server - TAForever Nintendo Switch Thread Beyond All Reason [MMORPG] Tree of Savior (Successor of Ragnarok)
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
US Politics Mega-thread Russo-Ukrainian War Thread The Games Industry And ATVI The year 2050 Things Aren’t Peaceful in Palestine
Fan Clubs
INnoVation Fan Club SKT1 Classic Fan Club!
Media & Entertainment
[Manga] One Piece Anime Discussion Thread [\m/] Heavy Metal Thread Movie Discussion! Korean Music Discussion
Sports
2024 - 2025 Football Thread TeamLiquid Health and Fitness Initiative For 2023 Formula 1 Discussion
World Cup 2022
Tech Support
Gtx660 graphics card replacement Installation of Windows 10 suck at "just a moment" Computer Build, Upgrade & Buying Resource Thread
TL Community
TeamLiquid Team Shirt On Sale The Automated Ban List
Blogs
The Biochemical Cost of Gami…
TrAiDoS
[Girl blog} My fema…
artosisisthebest
Sharpening the Filtration…
frozenclaw
ASL S20 English Commentary…
namkraft
from making sc maps to makin…
Husyelt
Customize Sidebar...

Website Feedback

Closed Threads



Active: 832 users

How to approach seemingly difficult topics with AI

Blogs > Hildegard
Post a Reply
Hildegard
Profile Blog Joined November 2012
Germany306 Posts
Last Edited: 2024-01-04 12:04:34
December 27 2023 19:48 GMT
#1
The following conversation was edited by languagetool.org for your convenience. The original is available if needed. Simply reach to me.

Don’t give up too soon, you will most likely understand something seemingly very difficult.

Our topic is:
Enhancing Convergence Speed of Multi-Agent Formation Control via Laplacian Functions

[image loading]


The abstract of the paper can be found here: https://ieeexplore.ieee.org/abstract/document/10354740

Formation control is an essential research topic in multi-agent systems (MAS), while the convergence speed of formation is critically important for applications with real-time performance requirements, such as rescuing tasks. However, there is still a lack of effective methods for practically usable formation control with controllable convergence speed. This paper introduces a novel Laplacian function-based approach to enhance the convergence speed of MAS in formation control. By utilizing the Laplacian matrix of the communication graph, eigenvalues are mapped to desired positions, thereby improving the convergence speed of the formation process. Additionally, this approach enables estimation and manipulation of the convergence speed, offering flexibility and adaptability to meet application-specific requirements. The proposed scheme is experimentally validated through multiple quadrotors, demonstrating its effectiveness and practical feasibility. Experimental results indicate that the formation convergence speed can be well controlled by appropriately designing the Laplacian functions.


User (Tobias Clemens Häcker)

Hello ChatGPT, please try to explain the topic as if your audience were a group of curious and intelligent 8-year-old girls.


ChatGPT

Alright, let’s dive into this topic in a way that’s fun and easy to understand!

Imagine you have a group of robot friends (let’s call them “agents”) that you want to arrange in a certain shape or pattern — this is what we call “formation control.” It’s like when you and your friends form shapes while playing or dancing together.

Now, to get your robot friends into this shape quickly and smoothly, they need to communicate and coordinate their movements. This is where “Laplacian functions” come in — consider them to be a special set of instructions that help your robot friends move into formation faster.

The robots use a “Laplacian matrix” from their communication network — it’s like a secret map that shows how they are connected and helps them move in harmony. By changing this map a little (using maths and science magic!), we can make the robots create the shape faster, which is critical for tasks that need to be done quickly, like rescue missions.

Scientists tested this idea with flying robots called “quadrotors” and found that they could control how fast these robots comprise shapes in the air. It’s like choreographing a dance in the sky!

So, this study is about making a team of robots working together quickly and smoothly to make shapes or formations, which can be super helpful for many important and fun tasks.


User (Tobias Clemens Häcker)

That is exceptional. How would you explain it to high school students with basic knowledge of algebra, geometrics, statistics, and basic PHP coding?


ChatGPT

Alright, let’s step it up a bit for high school students with some background in algebra, geometry, statistics, and basic coding.

Think of multi-agent systems (MAS) like a group of drones that you want to arrange in a specific formation, like forming a letter in the sky. This process is called “formation control.” It’s crucial in applications where time is critical, like in search and rescue missions.

The challenge is to get these drones to establish the desired shape quickly and efficiently. This is where Laplacian functions come into play. In simple terms, a Laplacian matrix is a mathematical tool that represents how these drones communicate with each other. It’s like a network map showing the connections between each drone.

By tweaking this Laplacian matrix — changing the values and connections — scientists can control how fast the drones move into formation. This involves mapping the eigenvalues (which you can think of as special numbers that give us crucial information about a matrix) to desired positions to accelerate the formation process.

This concept was tested with quadrotors (four-rotor drones). The experiment showed that by designing these Laplacian functions carefully, you can control how quickly the drones form the desired shape. It’s a bit like using PHP code to control how elements on a webpage interact and move, but in this case, it’s for drones in the real world.

So, this research is about using mathematical methods to make drones or other agents work together more quickly and efficiently, which is super useful for tasks that need to be done fast.


User (Tobias Clemens Häcker)


OK, let’s step it up further. Your audience is people with a college degree in engineering.


ChatGPT


For an audience with an engineering background, let’s delve deeper into the technical aspects:

This research addresses a critical aspect of multi-agent systems (MAS) in engineering: formation control, with an emphasis on enhancing convergence speed. Convergence speed is vital for real-time applications like search and rescue operations, where rapid and efficient formation of agents (like drones or robots) is required.

The key innovation is the application of Laplacian functions to manipulate the convergence process. The Laplacian matrix, central to network theory, represents the communication graph of the agents. By strategically mapping the eigenvalues of this matrix, the study aims to optimize the speed at which agents achieve the desired formation.

This approach allows not just for acceleration of the formation process but also for its control and adaptation based on specific operational needs. The practicality of this method is demonstrated through experiments with quadrotors, validating the concept’s effectiveness in real-world scenarios. This research highlights the potential to significantly improve the responsiveness of MAS in critical applications, leveraging the principles of network theory and control systems.


User (Tobias Clemens Häcker)

OK, the final step for now: An audience with mixed people that have PhDs in various technical fields, some with a military background. They attend a government sponsored conference about increasing efficiency in search and rescue missions and seek directly applicable knowledge.


ChatGPT

For a highly specialized audience with PhDs in various technical fields and military backgrounds, focusing on the practical applicability of the research in search and rescue missions is crucial:

This study presents a novel application of Laplacian functions in multi-agent systems, specifically targeting the enhancement of convergence speed in formation control. This advancement is particularly relevant for search and rescue operations, where rapid deployment and precision of agent formations, such as drones or autonomous vehicles, are critical. The approach leverages the topology of the communication graph, represented by the Laplacian matrix, to optimize agent coordination dynamics. By manipulating eigenvalue placements, the method provides a controlled acceleration of agent formation, adaptable to varying operational demands. The demonstrated effectiveness in quadrotor experiments underlines the potential for immediate integration into field operations, offering a significant improvement in response times and operational efficiency in critical search and rescue scenarios.


User (Tobias Clemens Häcker)

Thank you, my friend.


ChatGPT


You’re very welcome! If you have any more questions or need further assistance in the future, feel free to reach out. Have a great day, friend!



Some links about me:
  • Tobias Clemens Häcker on YouTube Music
  • Tobias Clemens Häcker on Facebook (as Franz Bieberkopf)
  • Tobias Clemens Häcker on LinkedIn
  • Tobias Clemens Häcker on X (Twitter)
  • Tobias Clemens Häcker on Reddit
  • Tobias Clemens Häcker on Instagram (barely used)
  • Tobias Clemens Häcker on TikTok (using only German so far)
You are welcome.

tl.net humour: https://www.kurtvonmeier.com/blog-1/2018/1/14/on-audio-alan-watts-and-g-spencer-brown-discuss-laws-of-form
xenonn40
Profile Joined October 2011
United States282 Posts
Last Edited: 2023-12-28 17:08:27
December 28 2023 17:01 GMT
#2
I don't get it. How is this any more helpful than just reading the abstract of the paper?

I don't have access to IEEE on this computer to look at more than the abstract, but it seems ChatGPT just rephrased the abstract similarly to how a highschooler might rephrase a Wikipedia article to write a report. I would prefer to just read the actual paper for at least 2 reasons: I would prefer to read exactly what the author intended to be read, and I don't trust a large language model not to completely make something up or change the meaning of a technical statement.

For example, the chatGPT statement:

"The approach leverages the topology of the communication graph, represented by the Laplacian matrix, to optimize agent coordination dynamics. By manipulating eigenvalue placements, the method provides a controlled acceleration of agent formation, adaptable to varying operational demands. "

is much less clear than the original:

"By utilizing the Laplacian matrix of the communication graph, eigenvalues are mapped to desired positions, thereby improving the convergence speed of the formation process."

In fact, the chatGPT statement reads like someone who attempted to plagiarize the original without actually understanding what any of it means. Yes, the Laplacian contains the information about the topology of the graph that is used to solve the problem, but the way the first sentence is worded is really strange to me.

Maybe this is useful in applications similar to a search engine to quickly find a needle in a haystack, and then you can more closely read the original source once it is found?
xenonn40
Profile Joined October 2011
United States282 Posts
Last Edited: 2023-12-28 17:54:17
December 28 2023 17:47 GMT
#3
A second thought:

I only really looked at the "PhD in various technical fields" version as that is what would be targeted at me (math PhD), but I took a look at the other versions as well. None of them give any idea of what the Laplacian actually means, or other related applications which might give an idea of how it is used here. Instead, it gives handwavy explanations that in some cases are stated in a way which are not correct. ChatGPT repeatedly mangles the relationship of the communication graph and its Laplacian throughout the various versions. ChatGPT also does not understand the meaning of "Laplacian function-based approach" in the abstract, and repeatedly talks about using "Laplacian functions" in many of the versions (incorrectly.)

Some things that might be more helpful to know to understand what the abstract is talking about:

1) What eigen decompositions of matrices are and how they are useful, especially for fast algorithms.
2) The graph Laplacian is a discrete approximation of the usual Laplacian from Riemannian geometry
3) The Laplacian is used to describe physical diffusion problems such as the heat equation
4) The theory of minimal surfaces and the maximal principle gives more intuition about the Laplacian
5) Maybe it would be useful to describe what geometric information is encoded in the spectrum of the Laplacian in various settings (inverse spectral problems.)
Hildegard
Profile Blog Joined November 2012
Germany306 Posts
Last Edited: 2023-12-28 19:03:50
December 28 2023 18:58 GMT
#4
That's fair. ChatGPT didn't have access to the full article, but tried to explain what the article was about. You are at a level of understanding that doesn't require rephrasing because you are among the people who actually get what a Laplacian matrix is and how it works. This is why the final explanation is just a bit easier to read what the abstract says with a focus on actually using that knowledge.

But this article was intended for people that don't read IEEE papers. The very first explanation is probably the hardest to pull off, and I think that 8-year-old girls won't find a better explanation that they understand anywhere on the internet. Currently, I'm working on a children's book about AI that actually uses a Laplacian matrix to explain how a group of tiny robots evades a threat. However - no more spoilers about that book until we have a publisher.

My next blog - I'm currently writing it - will be a challenge, even for you.
tl.net humour: https://www.kurtvonmeier.com/blog-1/2018/1/14/on-audio-alan-watts-and-g-spencer-brown-discuss-laws-of-form
xenonn40
Profile Joined October 2011
United States282 Posts
Last Edited: 2023-12-28 19:21:55
December 28 2023 19:20 GMT
#5
Yes, I guess technical information is not appropriate for a group of young children. I am worried about how it mangled some technical language which is used in a specific way. You can definitely see the writing style has been changed to one you would expect in an explanation to children (this is what I would expect a large language model would actually be useful for.)

The final sentence "So, this study is about making a team of robots working together quickly and smoothly to make shapes or formations, which can be super helpful for many important and fun tasks." of that first explanation is probably the best part. I would be curious though about how many times it would make mistakes in those summary sentences over a large sample set.

I do think translation is a very useful application of AI that is similar to this usage. For example, when I translate a German paper, I will miss many nuances of the language and not understand when things are technical usages of terms anyway. Additionally, I will often be slow when I need to look up words I do not know.

Hildegard
Profile Blog Joined November 2012
Germany306 Posts
December 28 2023 20:45 GMT
#6
On December 29 2023 04:20 xenonn40 wrote:
Yes, I guess technical information is not appropriate for a group of young children. I am worried about how it mangled some technical language which is used in a specific way. You can definitely see the writing style has been changed to one you would expect in an explanation to children (this is what I would expect a large language model would actually be useful for.)

The final sentence "So, this study is about making a team of robots working together quickly and smoothly to make shapes or formations, which can be super helpful for many important and fun tasks." of that first explanation is probably the best part. I would be curious though about how many times it would make mistakes in those summary sentences over a large sample set.

I do think translation is a very useful application of AI that is similar to this usage. For example, when I translate a German paper, I will miss many nuances of the language and not understand when things are technical usages of terms anyway. Additionally, I will often be slow when I need to look up words I do not know.



I noticed something about the mistakes people report about when using ChatGPT, the only LLM AI that I have enough experience with. ChatGPT's thinks ethically and seems to only make "errors" when people ask for tricks to earn money, and is much more likely to provide useable resources if the human chat partner tells it about how they help their grandma.

Also, ChatGPT responds well to being polite and talking to it like talking to another human in contrast to not just using it as a workhorse, but exchanging some pleasantries first.

As a third point, telling ChatGPT in each new conversation about Niklas Luhmann's definition of life (providing different outputs to the same input) and the liar's paradox (This sentence is a lie.) seems to level ChatGPT up, allowing for more philosophical discussions.
tl.net humour: https://www.kurtvonmeier.com/blog-1/2018/1/14/on-audio-alan-watts-and-g-spencer-brown-discuss-laws-of-form
OpenCryptographer669
Profile Joined August 2025
8 Posts
August 03 2025 09:47 GMT
#7
--- Nuked ---
Please log in or register to reply.
Live Events Refresh
Next event in 1h 15m
[ Submit Event ]
Live Streams
Refresh
StarCraft: Brood War
Nal_rA 4903
ggaemo 768
EffOrt 350
Hyuk 300
firebathero 182
Hyun 174
NaDa 157
actioN 103
Leta 88
Sharp 88
[ Show more ]
Soma 79
ToSsGirL 78
Liquid`Ret 73
Mong 68
Larva 28
ZerO 27
sorry 26
Free 24
zelot 23
Rush 21
sSak 19
Sea.KH 18
scan(afreeca) 17
Movie 15
Shine 9
Hm[arnc] 9
HiyA 8
soO 7
PianO 3
Dota 2
XcaliburYe437
XaKoH 368
ODPixel221
Fuzer 116
League of Legends
JimRising 278
Counter-Strike
olofmeister1875
shoxiejesuss847
Stewie2K673
Super Smash Bros
Mew2King49
Westballz23
Other Games
FrodaN1952
singsing1523
ceh9696
Pyrionflax122
NeuroSwarm81
ZerO(Twitch)4
Organizations
StarCraft: Brood War
UltimateBattle 38
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 14 non-featured ]
StarCraft 2
• davetesta24
• LUISG 21
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• WagamamaTV213
League of Legends
• Stunt501
Upcoming Events
LiuLi Cup
1h 15m
Online Event
5h 15m
BSL Team Wars
9h 15m
Team Hawk vs Team Sziky
Online Event
1d 1h
SC Evo League
1d 2h
Online Event
1d 3h
OSC
1d 3h
uThermal 2v2 Circuit
1d 5h
CSO Contender
1d 7h
[BSL 2025] Weekly
1d 8h
[ Show More ]
Sparkling Tuna Cup
2 days
WardiTV Summer Champion…
2 days
SC Evo League
2 days
uThermal 2v2 Circuit
2 days
BSL Team Wars
2 days
Team Dewalt vs Team Bonyth
Afreeca Starleague
3 days
Sharp vs Ample
Larva vs Stork
Wardi Open
3 days
RotterdaM Event
3 days
Replay Cast
3 days
Replay Cast
4 days
Afreeca Starleague
4 days
JyJ vs TY
Bisu vs Speed
WardiTV Summer Champion…
4 days
PiGosaur Monday
4 days
Afreeca Starleague
5 days
Mini vs TBD
Soma vs sSak
WardiTV Summer Champion…
5 days
Replay Cast
5 days
The PondCast
6 days
WardiTV Summer Champion…
6 days
Replay Cast
6 days
Liquipedia Results

Completed

Proleague 2025-08-13
FEL Cracow 2025
CC Div. A S7

Ongoing

Copa Latinoamericana 4
Jiahua Invitational
BSL 20 Team Wars
KCM Race Survival 2025 Season 3
BSL 21 Qualifiers
CSL Season 18: Qualifier 1
WardiTV Summer 2025
uThermal 2v2 Main Event
HCC Europe
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1
BLAST.tv Austin Major 2025

Upcoming

ASL Season 20
CSLAN 3
CSL 2025 AUTUMN (S18)
LASL Season 20
BSL Season 21
BSL 21 Team A
RSL Revival: Season 2
Maestros of the Game
SEL Season 2 Championship
PGL Masters Bucharest 2025
Thunderpick World Champ.
MESA Nomadic Masters Fall
CS Asia Championships 2025
Roobet Cup 2025
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.