• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EST 20:26
CET 02:26
KST 10:26
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
RSL Season 3 - Playoffs Preview0RSL Season 3 - RO16 Groups C & D Preview0RSL Season 3 - RO16 Groups A & B Preview2TL.net Map Contest #21: Winners12Intel X Team Liquid Seoul event: Showmatches and Meet the Pros10
Community News
[BSL21] Ro.16 Group Stage (C->B->A->D)4Weekly Cups (Nov 17-23): Solar, MaxPax, Clem win2RSL Season 3: RO16 results & RO8 bracket13Weekly Cups (Nov 10-16): Reynor, Solar lead Zerg surge2[TLMC] Fall/Winter 2025 Ladder Map Rotation14
StarCraft 2
General
When will we find out if there are more tournament Weekly Cups (Nov 17-23): Solar, MaxPax, Clem win SC: Evo Complete - Ranked Ladder OPEN ALPHA Weekly Cups (Nov 10-16): Reynor, Solar lead Zerg surge RSL Season 3: RO16 results & RO8 bracket
Tourneys
Tenacious Turtle Tussle [Alpha Pro Series] Nice vs Cure RSL Revival: Season 3 $5,000+ WardiTV 2025 Championship StarCraft Evolution League (SC Evo Biweekly)
Strategy
Custom Maps
Map Editor closed ?
External Content
Mutation # 501 Price of Progress Mutation # 500 Fright night Mutation # 499 Chilling Adaptation Mutation # 498 Wheel of Misfortune|Cradle of Death
Brood War
General
Which season is the best in ASL? [BSL21] Ro.16 Group Stage (C->B->A->D) Data analysis on 70 million replays FlaSh on: Biggest Problem With SnOw's Playstyle soO on: FanTaSy's Potential Return to StarCraft
Tourneys
[Megathread] Daily Proleagues [BSL21] RO16 Tie Breaker - Group B - Sun 21:00 CET [BSL21] GosuLeague T1 Ro16 - Tue & Thu 22:00 CET [BSL21] RO16 Tie Breaker - Group A - Sat 21:00 CET
Strategy
Game Theory for Starcraft How to stay on top of macro? Current Meta PvZ map balance
Other Games
General Games
Stormgate/Frost Giant Megathread Nintendo Switch Thread Beyond All Reason The Perfect Game Should offensive tower rushing be viable in RTS games?
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Mafia Game Mode Feedback/Ideas
Community
General
Russo-Ukrainian War Thread US Politics Mega-thread Artificial Intelligence Thread Things Aren’t Peaceful in Palestine YouTube Thread
Fan Clubs
White-Ra Fan Club
Media & Entertainment
[Manga] One Piece Movie Discussion! Anime Discussion Thread
Sports
2024 - 2026 Football Thread Formula 1 Discussion NBA General Discussion MLB/Baseball 2023 TeamLiquid Health and Fitness Initiative For 2023
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
Where to ask questions and add stream? The Automated Ban List
Blogs
Thanks for the RSL
Hildegard
The Health Impact of Joining…
TrAiDoS
Saturation point
Uldridge
DnB/metal remix FFO Mick Go…
ImbaTosS
Customize Sidebar...

Website Feedback

Closed Threads



Active: 2083 users

a fun math puzzle

Blogs > evanthebouncy!
Post a Reply
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
June 25 2015 05:02 GMT
#1
a curious puzzle for those who want to have some fun.
https://gist.github.com/evanthebouncy/bde3e510e562da5db6a2
take a look at this code and try to run it, what it does is it creates some random functions f1,f2,...,f100, and then form a chain by composing them together, and the result is a (random) constant function! how can it be?
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
Xxazn4lyfe51xX
Profile Joined October 2010
United States976 Posts
June 25 2015 07:42 GMT
#2
As far as I can tell, it's not really a constant function. As n grows larger, the function approaches a random, constant value. For the purposes of the interpreter they give us, the point at which the function gives a constant number to the number of digits the output reads is about around n = 16.

I'm not good enough, or at least not patient enough with math to figure out why exactly it is that putting numbers through increasing numbers of random functions tends towards constancy though.
fixed_point
Profile Joined June 2011
Germany4891 Posts
Last Edited: 2015-06-25 09:52:00
June 25 2015 09:27 GMT
#3
By order arguments, one can show that at each value of n, the result of the composition is more dependent on the random numbers you generated rather than the initial x.

This is because at the first iteration f_1 you've already mapped any x to a number between 0 and 1. Then look at the series expansion of 1/(1+e^(-x)) (respectively 1/(1+e^(x)) ) for n=2 onwards and you'll see that the terms depending on x become negligible since the powers of 0 < f_1(x) < 1 vanishes quickly unless f_1(x)=1 is already a constant function.

So yeah, the result is (almost) never a constant function, but damned close to one. Caveat: if your random number at any point is zero the function becomes constant.
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
June 25 2015 11:35 GMT
#4
On June 25 2015 18:27 fixed_point wrote:
By order arguments, one can show that at each value of n, the result of the composition is more dependent on the random numbers you generated rather than the initial x.

This is because at the first iteration f_1 you've already mapped any x to a number between 0 and 1. Then look at the series expansion of 1/(1+e^(-x)) (respectively 1/(1+e^(x)) ) for n=2 onwards and you'll see that the terms depending on x become negligible since the powers of 0 < f_1(x) < 1 vanishes quickly unless f_1(x)=1 is already a constant function.

So yeah, the result is (almost) never a constant function, but damned close to one. Caveat: if your random number at any point is zero the function becomes constant.


it's fitting that someone with a name like "fixed point" should answer this
lol
but yeah I know it's not a constant function, it's just faster to say it that way.

can u elaborate a bit on the derivative argument (serieis expansion)? derivatives and function composition has a strong relationship via the chain rule, so we can take the derivative of the huge chain and get a big multiplications (which approaches 0 in our problem), is that what you were trying to say?
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
June 25 2015 11:37 GMT
#5
On June 25 2015 16:42 Xxazn4lyfe51xX wrote:
As far as I can tell, it's not really a constant function. As n grows larger, the function approaches a random, constant value. For the purposes of the interpreter they give us, the point at which the function gives a constant number to the number of digits the output reads is about around n = 16.

I'm not good enough, or at least not patient enough with math to figure out why exactly it is that putting numbers through increasing numbers of random functions tends towards constancy though.


the way I reasoned with it is consider a pair of numbers x, y
and push the numbers through the chain, i.e.
x, y
f1(x), f1(y)
f2(x), f2(y)
...

and try to prove that in each step the distance between x and y is closer together

once you're done with that, u will be able to show then for any distinct values (x, y) they will converge together after a sufficiently long chain, thus the chain is close to a constant function
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
fixed_point
Profile Joined June 2011
Germany4891 Posts
Last Edited: 2015-06-25 13:18:03
June 25 2015 13:16 GMT
#6
On June 25 2015 20:35 evanthebouncy! wrote:
Show nested quote +
On June 25 2015 18:27 fixed_point wrote:
By order arguments, one can show that at each value of n, the result of the composition is more dependent on the random numbers you generated rather than the initial x.

This is because at the first iteration f_1 you've already mapped any x to a number between 0 and 1. Then look at the series expansion of 1/(1+e^(-x)) (respectively 1/(1+e^(x)) ) for n=2 onwards and you'll see that the terms depending on x become negligible since the powers of 0 < f_1(x) < 1 vanishes quickly unless f_1(x)=1 is already a constant function.

So yeah, the result is (almost) never a constant function, but damned close to one. Caveat: if your random number at any point is zero the function becomes constant.


it's fitting that someone with a name like "fixed point" should answer this
lol
but yeah I know it's not a constant function, it's just faster to say it that way.

can u elaborate a bit on the derivative argument (serieis expansion)? derivatives and function composition has a strong relationship via the chain rule, so we can take the derivative of the huge chain and get a big multiplications (which approaches 0 in our problem), is that what you were trying to say?

Derivatives are unnecessary. I can write more details with greater clarity in latex when I get home.
DucK-
Profile Blog Joined January 2009
Singapore11447 Posts
June 25 2015 15:01 GMT
#7
I thought this was pure math. Seems like I need some programming knowledge to understand :\
TanGeng
Profile Blog Joined January 2009
Sanya12364 Posts
June 25 2015 19:40 GMT
#8
I don't really know how fun that was. If you jam a number through 100 iterations of

shrink_fun(x) = 1 / (1 + e^-x)

You don't leave a lot of information about the original x at the very end.
Moderator我们是个踏实的赞助商模式俱乐部
fixed_point
Profile Joined June 2011
Germany4891 Posts
June 25 2015 21:26 GMT
#9
Heuristically this is why the function converges to a constant one.

PDF file on google drive
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
June 25 2015 23:34 GMT
#10
On June 26 2015 06:26 fixed_point wrote:
Heuristically this is why the function converges to a constant one.

PDF file on google drive


wow that's quite more involved than I expected.
but I'm sure it's second nature to you so good!!
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
Kleinmuuhg
Profile Blog Joined September 2010
Vanuatu4091 Posts
June 26 2015 00:12 GMT
#11
On June 25 2015 20:37 evanthebouncy! wrote:
Show nested quote +
On June 25 2015 16:42 Xxazn4lyfe51xX wrote:
As far as I can tell, it's not really a constant function. As n grows larger, the function approaches a random, constant value. For the purposes of the interpreter they give us, the point at which the function gives a constant number to the number of digits the output reads is about around n = 16.

I'm not good enough, or at least not patient enough with math to figure out why exactly it is that putting numbers through increasing numbers of random functions tends towards constancy though.


the way I reasoned with it is consider a pair of numbers x, y
and push the numbers through the chain, i.e.
x, y
f1(x), f1(y)
f2(x), f2(y)
...

and try to prove that in each step the distance between x and y is closer together

once you're done with that, u will be able to show then for any distinct values (x, y) they will converge together after a sufficiently long chain, thus the chain is close to a constant function

sounds like a typical contraction to me
This is our town, scrub
fixed_point
Profile Joined June 2011
Germany4891 Posts
Last Edited: 2015-06-26 06:05:54
June 26 2015 06:00 GMT
#12
On June 26 2015 09:12 Kleinmuuhg wrote:
Show nested quote +
On June 25 2015 20:37 evanthebouncy! wrote:
On June 25 2015 16:42 Xxazn4lyfe51xX wrote:
As far as I can tell, it's not really a constant function. As n grows larger, the function approaches a random, constant value. For the purposes of the interpreter they give us, the point at which the function gives a constant number to the number of digits the output reads is about around n = 16.

I'm not good enough, or at least not patient enough with math to figure out why exactly it is that putting numbers through increasing numbers of random functions tends towards constancy though.


the way I reasoned with it is consider a pair of numbers x, y
and push the numbers through the chain, i.e.
x, y
f1(x), f1(y)
f2(x), f2(y)
...

and try to prove that in each step the distance between x and y is closer together

once you're done with that, u will be able to show then for any distinct values (x, y) they will converge together after a sufficiently long chain, thus the chain is close to a constant function

sounds like a typical contraction to me

If the domain is two fixed numbers, the functions are contractions. Generally you'll need a fixed constant 0 \leq \lambda < 1 for which the distance between any two f_1(x),f_2(y) is less than \lambda |x-y| for all x,y \in R. I'm not sure we have that here, but then again my brain doesn't work at this hour (need to take a look at the behaviour near x=0)
manicmessiah
Profile Joined June 2015
United States107 Posts
June 26 2015 07:33 GMT
#13
I have a feeling I should know what is going on, but I have no idea
fixed_point
Profile Joined June 2011
Germany4891 Posts
Last Edited: 2015-06-26 11:21:08
June 26 2015 10:59 GMT
#14
On June 26 2015 15:00 fixed_point wrote:
Show nested quote +
On June 26 2015 09:12 Kleinmuuhg wrote:
On June 25 2015 20:37 evanthebouncy! wrote:
On June 25 2015 16:42 Xxazn4lyfe51xX wrote:
As far as I can tell, it's not really a constant function. As n grows larger, the function approaches a random, constant value. For the purposes of the interpreter they give us, the point at which the function gives a constant number to the number of digits the output reads is about around n = 16.

I'm not good enough, or at least not patient enough with math to figure out why exactly it is that putting numbers through increasing numbers of random functions tends towards constancy though.


the way I reasoned with it is consider a pair of numbers x, y
and push the numbers through the chain, i.e.
x, y
f1(x), f1(y)
f2(x), f2(y)
...

and try to prove that in each step the distance between x and y is closer together

once you're done with that, u will be able to show then for any distinct values (x, y) they will converge together after a sufficiently long chain, thus the chain is close to a constant function

sounds like a typical contraction to me

If the domain is two fixed numbers, the functions are contractions. Generally you'll need a fixed constant 0 \leq \lambda < 1 for which the distance between any two f_1(x),f_2(y) is less than \lambda |x-y| for all x,y \in R. I'm not sure we have that here, but then again my brain doesn't work at this hour (need to take a look at the behaviour near x=0)

Nevermind, I'm an idiot. y=f_1(x) is between 0 and 1 and so f_100(f_99(...f(2(y)))) is a contraction. Therefore you can definitely use the contraction mapping/Banach fixed point theorem to prove that the composition/chain converges to a fixed point (i.e. constant number) for sufficiently large compositions. Pretty ironic, given my name...

However, I still think the series expansion is perhaps more intuitive for one unfamiliar with this theorem, since the original question asks for a finite sequence of compositions. (Of course from an abstract point of view, this is just a specific case of the fixed point theorem).
Dagobert
Profile Blog Joined July 2009
Netherlands1858 Posts
June 26 2015 12:11 GMT
#15
Having trouble with Berkeley homework?
fixed_point
Profile Joined June 2011
Germany4891 Posts
June 26 2015 12:42 GMT
#16
On June 26 2015 21:11 Dagobert wrote:
Having trouble with Berkeley homework?

I wish
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
June 26 2015 23:19 GMT
#17
On June 26 2015 21:11 Dagobert wrote:
Having trouble with Berkeley homework?


nah i graduated 3 yrs ago lol i'm doing a phd now.
this problem actually came up when i tried to run a randomly initialized neural network of 10 layers w/o training, and noticing it is always the constant function, so I thought it was really cool so I abstracted away the non-essentials and hope people would find the simplified problem interesting to look at.
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
Last Edited: 2015-06-26 23:22:51
June 26 2015 23:20 GMT
#18
On June 26 2015 19:59 fixed_point wrote:
....
Pretty ironic, given my name...
....





that was my thought the entire time lawl
fffffffffffffffffffffffffffffffff(uck)
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
Dagobert
Profile Blog Joined July 2009
Netherlands1858 Posts
June 27 2015 07:15 GMT
#19
Oh, that's more interesting than the problem here. What are you trying to get the neural network to do?
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
June 27 2015 23:24 GMT
#20
On June 27 2015 16:15 Dagobert wrote:
Oh, that's more interesting than the problem here. What are you trying to get the neural network to do?

nothing. just want to play with one for fun (cuz people kept talking about their fantastic learning properties). Just want to run it on the mnist dataset. Couldn't do back propagation on the deep one unfortunately, so i trained a shallow one with 94% accuracy, which is not bad i think.
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
Please log in or register to reply.
Live Events Refresh
Tenacious Turtle Tussle
00:00
Biweekly #36
CranKy Ducklings136
davetesta33
LiquipediaDiscussion
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
PiGStarcraft402
elazer 159
ProTech122
Nina 94
SortOf 44
CosmosSc2 37
StarCraft: Brood War
Calm 5181
Artosis 725
ggaemo 253
Aegong 45
Dota 2
NeuroSwarm4
Counter-Strike
Coldzera 970
Fnx 301
Super Smash Bros
hungrybox901
Other Games
tarik_tv6439
shahzam674
JimRising 632
Day[9].tv576
C9.Mang0282
ViBE155
WinterStarcraft149
Organizations
Other Games
gamesdonequick581
Dota 2
PGL Dota 2 - Main Stream160
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 18 non-featured ]
StarCraft 2
• HeavenSC 33
• Adnapsc2 3
• intothetv
• Kozan
• sooper7s
• Migwel
• AfreecaTV YouTube
• LaughNgamezSOOP
• IndyKCrew
StarCraft: Brood War
• 80smullet 13
• STPLYoutube
• ZZZeroYoutube
• BSLYoutube
Dota 2
• masondota21219
League of Legends
• Doublelift4517
Other Games
• imaqtpie1372
• Scarra885
• Day9tv576
Upcoming Events
The PondCast
8h 34m
Replay Cast
21h 34m
OSC
1d 15h
LAN Event
1d 16h
Replay Cast
1d 21h
Replay Cast
2 days
WardiTV Korean Royale
2 days
Sparkling Tuna Cup
3 days
WardiTV Korean Royale
3 days
Replay Cast
3 days
[ Show More ]
Wardi Open
4 days
Monday Night Weeklies
4 days
StarCraft2.fi
4 days
Replay Cast
4 days
Wardi Open
5 days
StarCraft2.fi
5 days
Wardi Open
6 days
StarCraft2.fi
6 days
Liquipedia Results

Completed

SOOP Univ League 2025
RSL Revival: Season 3
Eternal Conflict S1

Ongoing

C-Race Season 1
IPSL Winter 2025-26
KCM Race Survival 2025 Season 4
YSL S2
BSL Season 21
CSCL: Masked Kings S3
Slon Tour Season 2
META Madness #9
SL Budapest Major 2025
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025
Thunderpick World Champ.
CS Asia Championships 2025
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2

Upcoming

BSL 21 Non-Korean Championship
Acropolis #4
IPSL Spring 2026
HSC XXVIII
RSL Offline Finals
WardiTV 2025
PGL Cluj-Napoca 2026
IEM Kraków 2026
BLAST Bounty Winter 2026
BLAST Bounty Winter 2026: Closed Qualifier
eXTREMESLAND 2025
ESL Impact League Season 8
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.