• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 23:54
CEST 05:54
KST 12:54
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
Team TLMC #5: Winners Announced!0[ASL20] Ro8 Preview Pt2: Holding On9Maestros of the Game: Live Finals Preview (RO4)5TL.net Map Contest #21 - Finalists4Team TLMC #5: Vote to Decide Ladder Maps!0
Community News
5.0.15 Patch Balance Hotfix (2025-10-8)19Weekly Cups (Sept 29-Oct 5): MaxPax triples up3PartinG joins SteamerZone, returns to SC2 competition245.0.15 Balance Patch Notes (Live version)118$2,500 WardiTV TL Map Contest Tournament 152
StarCraft 2
General
5.0.15 Patch Balance Hotfix (2025-10-8) 5.0.15 Balance Patch Notes (Live version) The New Patch Killed Mech! Weekly Cups (Sept 29-Oct 5): MaxPax triples up Team TLMC #5: Winners Announced!
Tourneys
Tenacious Turtle Tussle Sea Duckling Open (Global, Bronze-Diamond) $2,500 WardiTV TL Map Contest Tournament 15 RSL Offline Finals Dates + Ticket Sales! Stellar Fest
Strategy
Custom Maps
External Content
Mutation # 494 Unstable Environment Mutation # 493 Quick Killers Mutation # 492 Get Out More Mutation # 491 Night Drive
Brood War
General
Question regarding recent ASL Bisu vs Larva game [BSL21] - How to Qualify to Each League ? ASL20 General Discussion BW General Discussion RepMastered™: replay sharing and analyzer site
Tourneys
[Megathread] Daily Proleagues [ASL20] Ro8 Day 4 Small VOD Thread 2.0 [ASL20] Ro8 Day 3
Strategy
Current Meta TvZ Theorycraft - Improving on State of the Art Proposed Glossary of Strategic Uncertainty 9 hatch vs 10 hatch vs 12 hatch
Other Games
General Games
Stormgate/Frost Giant Megathread Nintendo Switch Thread ZeroSpace Megathread Dawn of War IV Path of Exile
Dota 2
Official 'what is Dota anymore' discussion LiquidDota to reintegrate into TL.net
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
SPIRED by.ASL Mafia {211640} TL Mafia Community Thread
Community
General
US Politics Mega-thread Things Aren’t Peaceful in Palestine Russo-Ukrainian War Thread UK Politics Mega-thread The Games Industry And ATVI
Fan Clubs
The herO Fan Club! The Happy Fan Club!
Media & Entertainment
Movie Discussion! Anime Discussion Thread [Manga] One Piece
Sports
2024 - 2026 Football Thread Formula 1 Discussion MLB/Baseball 2023 NBA General Discussion TeamLiquid Health and Fitness Initiative For 2023
World Cup 2022
Tech Support
SC2 Client Relocalization [Change SC2 Language] Linksys AE2500 USB WIFI keeps disconnecting Computer Build, Upgrade & Buying Resource Thread
TL Community
Recent Gifted Posts The Automated Ban List BarCraft in Tokyo Japan for ASL Season5 Final
Blogs
What your "aura" says about…
Peanutsc
Mental Health In Esports: Wo…
TrAiDoS
Try to reverse getting fired …
Garnet
[ASL20] Players bad at pi…
pullarius1
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1231 users

a fun math puzzle

Blogs > evanthebouncy!
Post a Reply
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
June 25 2015 05:02 GMT
#1
a curious puzzle for those who want to have some fun.
https://gist.github.com/evanthebouncy/bde3e510e562da5db6a2
take a look at this code and try to run it, what it does is it creates some random functions f1,f2,...,f100, and then form a chain by composing them together, and the result is a (random) constant function! how can it be?
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
Xxazn4lyfe51xX
Profile Joined October 2010
United States976 Posts
June 25 2015 07:42 GMT
#2
As far as I can tell, it's not really a constant function. As n grows larger, the function approaches a random, constant value. For the purposes of the interpreter they give us, the point at which the function gives a constant number to the number of digits the output reads is about around n = 16.

I'm not good enough, or at least not patient enough with math to figure out why exactly it is that putting numbers through increasing numbers of random functions tends towards constancy though.
fixed_point
Profile Joined June 2011
Germany4891 Posts
Last Edited: 2015-06-25 09:52:00
June 25 2015 09:27 GMT
#3
By order arguments, one can show that at each value of n, the result of the composition is more dependent on the random numbers you generated rather than the initial x.

This is because at the first iteration f_1 you've already mapped any x to a number between 0 and 1. Then look at the series expansion of 1/(1+e^(-x)) (respectively 1/(1+e^(x)) ) for n=2 onwards and you'll see that the terms depending on x become negligible since the powers of 0 < f_1(x) < 1 vanishes quickly unless f_1(x)=1 is already a constant function.

So yeah, the result is (almost) never a constant function, but damned close to one. Caveat: if your random number at any point is zero the function becomes constant.
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
June 25 2015 11:35 GMT
#4
On June 25 2015 18:27 fixed_point wrote:
By order arguments, one can show that at each value of n, the result of the composition is more dependent on the random numbers you generated rather than the initial x.

This is because at the first iteration f_1 you've already mapped any x to a number between 0 and 1. Then look at the series expansion of 1/(1+e^(-x)) (respectively 1/(1+e^(x)) ) for n=2 onwards and you'll see that the terms depending on x become negligible since the powers of 0 < f_1(x) < 1 vanishes quickly unless f_1(x)=1 is already a constant function.

So yeah, the result is (almost) never a constant function, but damned close to one. Caveat: if your random number at any point is zero the function becomes constant.


it's fitting that someone with a name like "fixed point" should answer this
lol
but yeah I know it's not a constant function, it's just faster to say it that way.

can u elaborate a bit on the derivative argument (serieis expansion)? derivatives and function composition has a strong relationship via the chain rule, so we can take the derivative of the huge chain and get a big multiplications (which approaches 0 in our problem), is that what you were trying to say?
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
June 25 2015 11:37 GMT
#5
On June 25 2015 16:42 Xxazn4lyfe51xX wrote:
As far as I can tell, it's not really a constant function. As n grows larger, the function approaches a random, constant value. For the purposes of the interpreter they give us, the point at which the function gives a constant number to the number of digits the output reads is about around n = 16.

I'm not good enough, or at least not patient enough with math to figure out why exactly it is that putting numbers through increasing numbers of random functions tends towards constancy though.


the way I reasoned with it is consider a pair of numbers x, y
and push the numbers through the chain, i.e.
x, y
f1(x), f1(y)
f2(x), f2(y)
...

and try to prove that in each step the distance between x and y is closer together

once you're done with that, u will be able to show then for any distinct values (x, y) they will converge together after a sufficiently long chain, thus the chain is close to a constant function
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
fixed_point
Profile Joined June 2011
Germany4891 Posts
Last Edited: 2015-06-25 13:18:03
June 25 2015 13:16 GMT
#6
On June 25 2015 20:35 evanthebouncy! wrote:
Show nested quote +
On June 25 2015 18:27 fixed_point wrote:
By order arguments, one can show that at each value of n, the result of the composition is more dependent on the random numbers you generated rather than the initial x.

This is because at the first iteration f_1 you've already mapped any x to a number between 0 and 1. Then look at the series expansion of 1/(1+e^(-x)) (respectively 1/(1+e^(x)) ) for n=2 onwards and you'll see that the terms depending on x become negligible since the powers of 0 < f_1(x) < 1 vanishes quickly unless f_1(x)=1 is already a constant function.

So yeah, the result is (almost) never a constant function, but damned close to one. Caveat: if your random number at any point is zero the function becomes constant.


it's fitting that someone with a name like "fixed point" should answer this
lol
but yeah I know it's not a constant function, it's just faster to say it that way.

can u elaborate a bit on the derivative argument (serieis expansion)? derivatives and function composition has a strong relationship via the chain rule, so we can take the derivative of the huge chain and get a big multiplications (which approaches 0 in our problem), is that what you were trying to say?

Derivatives are unnecessary. I can write more details with greater clarity in latex when I get home.
DucK-
Profile Blog Joined January 2009
Singapore11447 Posts
June 25 2015 15:01 GMT
#7
I thought this was pure math. Seems like I need some programming knowledge to understand :\
TanGeng
Profile Blog Joined January 2009
Sanya12364 Posts
June 25 2015 19:40 GMT
#8
I don't really know how fun that was. If you jam a number through 100 iterations of

shrink_fun(x) = 1 / (1 + e^-x)

You don't leave a lot of information about the original x at the very end.
Moderator我们是个踏实的赞助商模式俱乐部
fixed_point
Profile Joined June 2011
Germany4891 Posts
June 25 2015 21:26 GMT
#9
Heuristically this is why the function converges to a constant one.

PDF file on google drive
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
June 25 2015 23:34 GMT
#10
On June 26 2015 06:26 fixed_point wrote:
Heuristically this is why the function converges to a constant one.

PDF file on google drive


wow that's quite more involved than I expected.
but I'm sure it's second nature to you so good!!
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
Kleinmuuhg
Profile Blog Joined September 2010
Vanuatu4091 Posts
June 26 2015 00:12 GMT
#11
On June 25 2015 20:37 evanthebouncy! wrote:
Show nested quote +
On June 25 2015 16:42 Xxazn4lyfe51xX wrote:
As far as I can tell, it's not really a constant function. As n grows larger, the function approaches a random, constant value. For the purposes of the interpreter they give us, the point at which the function gives a constant number to the number of digits the output reads is about around n = 16.

I'm not good enough, or at least not patient enough with math to figure out why exactly it is that putting numbers through increasing numbers of random functions tends towards constancy though.


the way I reasoned with it is consider a pair of numbers x, y
and push the numbers through the chain, i.e.
x, y
f1(x), f1(y)
f2(x), f2(y)
...

and try to prove that in each step the distance between x and y is closer together

once you're done with that, u will be able to show then for any distinct values (x, y) they will converge together after a sufficiently long chain, thus the chain is close to a constant function

sounds like a typical contraction to me
This is our town, scrub
fixed_point
Profile Joined June 2011
Germany4891 Posts
Last Edited: 2015-06-26 06:05:54
June 26 2015 06:00 GMT
#12
On June 26 2015 09:12 Kleinmuuhg wrote:
Show nested quote +
On June 25 2015 20:37 evanthebouncy! wrote:
On June 25 2015 16:42 Xxazn4lyfe51xX wrote:
As far as I can tell, it's not really a constant function. As n grows larger, the function approaches a random, constant value. For the purposes of the interpreter they give us, the point at which the function gives a constant number to the number of digits the output reads is about around n = 16.

I'm not good enough, or at least not patient enough with math to figure out why exactly it is that putting numbers through increasing numbers of random functions tends towards constancy though.


the way I reasoned with it is consider a pair of numbers x, y
and push the numbers through the chain, i.e.
x, y
f1(x), f1(y)
f2(x), f2(y)
...

and try to prove that in each step the distance between x and y is closer together

once you're done with that, u will be able to show then for any distinct values (x, y) they will converge together after a sufficiently long chain, thus the chain is close to a constant function

sounds like a typical contraction to me

If the domain is two fixed numbers, the functions are contractions. Generally you'll need a fixed constant 0 \leq \lambda < 1 for which the distance between any two f_1(x),f_2(y) is less than \lambda |x-y| for all x,y \in R. I'm not sure we have that here, but then again my brain doesn't work at this hour (need to take a look at the behaviour near x=0)
manicmessiah
Profile Joined June 2015
United States107 Posts
June 26 2015 07:33 GMT
#13
I have a feeling I should know what is going on, but I have no idea
fixed_point
Profile Joined June 2011
Germany4891 Posts
Last Edited: 2015-06-26 11:21:08
June 26 2015 10:59 GMT
#14
On June 26 2015 15:00 fixed_point wrote:
Show nested quote +
On June 26 2015 09:12 Kleinmuuhg wrote:
On June 25 2015 20:37 evanthebouncy! wrote:
On June 25 2015 16:42 Xxazn4lyfe51xX wrote:
As far as I can tell, it's not really a constant function. As n grows larger, the function approaches a random, constant value. For the purposes of the interpreter they give us, the point at which the function gives a constant number to the number of digits the output reads is about around n = 16.

I'm not good enough, or at least not patient enough with math to figure out why exactly it is that putting numbers through increasing numbers of random functions tends towards constancy though.


the way I reasoned with it is consider a pair of numbers x, y
and push the numbers through the chain, i.e.
x, y
f1(x), f1(y)
f2(x), f2(y)
...

and try to prove that in each step the distance between x and y is closer together

once you're done with that, u will be able to show then for any distinct values (x, y) they will converge together after a sufficiently long chain, thus the chain is close to a constant function

sounds like a typical contraction to me

If the domain is two fixed numbers, the functions are contractions. Generally you'll need a fixed constant 0 \leq \lambda < 1 for which the distance between any two f_1(x),f_2(y) is less than \lambda |x-y| for all x,y \in R. I'm not sure we have that here, but then again my brain doesn't work at this hour (need to take a look at the behaviour near x=0)

Nevermind, I'm an idiot. y=f_1(x) is between 0 and 1 and so f_100(f_99(...f(2(y)))) is a contraction. Therefore you can definitely use the contraction mapping/Banach fixed point theorem to prove that the composition/chain converges to a fixed point (i.e. constant number) for sufficiently large compositions. Pretty ironic, given my name...

However, I still think the series expansion is perhaps more intuitive for one unfamiliar with this theorem, since the original question asks for a finite sequence of compositions. (Of course from an abstract point of view, this is just a specific case of the fixed point theorem).
Dagobert
Profile Blog Joined July 2009
Netherlands1858 Posts
June 26 2015 12:11 GMT
#15
Having trouble with Berkeley homework?
fixed_point
Profile Joined June 2011
Germany4891 Posts
June 26 2015 12:42 GMT
#16
On June 26 2015 21:11 Dagobert wrote:
Having trouble with Berkeley homework?

I wish
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
June 26 2015 23:19 GMT
#17
On June 26 2015 21:11 Dagobert wrote:
Having trouble with Berkeley homework?


nah i graduated 3 yrs ago lol i'm doing a phd now.
this problem actually came up when i tried to run a randomly initialized neural network of 10 layers w/o training, and noticing it is always the constant function, so I thought it was really cool so I abstracted away the non-essentials and hope people would find the simplified problem interesting to look at.
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
Last Edited: 2015-06-26 23:22:51
June 26 2015 23:20 GMT
#18
On June 26 2015 19:59 fixed_point wrote:
....
Pretty ironic, given my name...
....





that was my thought the entire time lawl
fffffffffffffffffffffffffffffffff(uck)
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
Dagobert
Profile Blog Joined July 2009
Netherlands1858 Posts
June 27 2015 07:15 GMT
#19
Oh, that's more interesting than the problem here. What are you trying to get the neural network to do?
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
June 27 2015 23:24 GMT
#20
On June 27 2015 16:15 Dagobert wrote:
Oh, that's more interesting than the problem here. What are you trying to get the neural network to do?

nothing. just want to play with one for fun (cuz people kept talking about their fantastic learning properties). Just want to run it on the mnist dataset. Couldn't do back propagation on the deep one unfortunately, so i trained a shallow one with 94% accuracy, which is not bad i think.
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
Please log in or register to reply.
Live Events Refresh
Next event in 6h 6m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
Nathanias 148
StarCraft: Brood War
Leta 97
Noble 87
Sharp 45
KwarK 11
Icarus 11
Dota 2
monkeys_forever482
capcasts79
LuMiX1
Counter-Strike
Stewie2K535
Other Games
summit1g10327
shahzam954
JimRising 654
C9.Mang0619
Maynarde188
ViBE166
Models1
Organizations
Other Games
gamesdonequick1005
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 13 non-featured ]
StarCraft 2
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
League of Legends
• Lourlo898
• Rush780
• Stunt359
Upcoming Events
The PondCast
6h 6m
Map Test Tournament
7h 6m
OSC
12h 6m
SKillous vs Krystianer
GgMaChine vs Demi
ArT vs Creator
INexorable vs TBD
ReBellioN vs TriGGeR
UedSoldier vs Iba
sOs vs Moja
Map Test Tournament
1d 7h
OSC
1d 9h
Korean StarCraft League
1d 23h
CranKy Ducklings
2 days
Map Test Tournament
2 days
OSC
2 days
[BSL 2025] Weekly
2 days
[ Show More ]
Safe House 2
2 days
Sparkling Tuna Cup
3 days
Map Test Tournament
3 days
OSC
3 days
IPSL
3 days
Bonyth vs Art_Of_Turtle
Razz vs rasowy
Liquipedia Results

Completed

Acropolis #4 - TS2
Maestros of the Game
HCC Europe

Ongoing

BSL 21 Points
ASL Season 20
CSL 2025 AUTUMN (S18)
C-Race Season 1
IPSL Winter 2025-26
WardiTV TLMC #15
EC S1
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025

Upcoming

SC4ALL: Brood War
BSL Season 21
BSL 21 Team A
RSL Offline Finals
RSL Revival: Season 3
Stellar Fest
SC4ALL: StarCraft II
eXTREMESLAND 2025
ESL Impact League Season 8
SL Budapest Major 2025
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025
Thunderpick World Champ.
CS Asia Championships 2025
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.