• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 00:29
CEST 06:29
KST 13:29
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
[ASL20] Ro24 Preview Pt1: Runway112v2 & SC: Evo Complete: Weekend Double Feature2Team Liquid Map Contest #21 - Presented by Monster Energy9uThermal's 2v2 Tour: $15,000 Main Event18Serral wins EWC 202549
Community News
Weekly Cups (Aug 11-17): MaxPax triples again!9Weekly Cups (Aug 4-10): MaxPax wins a triple6SC2's Safe House 2 - October 18 & 195Weekly Cups (Jul 28-Aug 3): herO doubles up6LiuLi Cup - August 2025 Tournaments7
StarCraft 2
General
Weekly Cups (Aug 11-17): MaxPax triples again! RSL Revival patreon money discussion thread What mix of new and old maps do you want in the next 1v1 ladder pool? (SC2) : Team Liquid Map Contest #21 - Presented by Monster Energy Would you prefer the game to be balanced around top-tier pro level or average pro level?
Tourneys
Sparkling Tuna Cup - Weekly Open Tournament RSL: Revival, a new crowdfunded tournament series LiuLi Cup - August 2025 Tournaments SEL Masters #5 - Korea vs Russia (SC Evo) Enki Epic Series #5 - TaeJa vs Classic (SC Evo)
Strategy
Custom Maps
External Content
Mutation # 487 Think Fast Mutation # 486 Watch the Skies Mutation # 485 Death from Below Mutation # 484 Magnetic Pull
Brood War
General
ASL 20 HYPE VIDEO! Flash Announces (and Retracts) Hiatus From ASL BW General Discussion New season has just come in ladder [ASL20] Ro24 Preview Pt1: Runway
Tourneys
[ASL20] Ro24 Group A BWCL Season 63 Announcement Cosmonarchy Pro Showmatches KCM 2025 Season 3
Strategy
Simple Questions, Simple Answers Fighting Spirit mining rates [G] Mineral Boosting Muta micro map competition
Other Games
General Games
Stormgate/Frost Giant Megathread Nintendo Switch Thread Total Annihilation Server - TAForever Beyond All Reason [MMORPG] Tree of Savior (Successor of Ragnarok)
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
Russo-Ukrainian War Thread US Politics Mega-thread Things Aren’t Peaceful in Palestine European Politico-economics QA Mega-thread The Games Industry And ATVI
Fan Clubs
INnoVation Fan Club SKT1 Classic Fan Club!
Media & Entertainment
Movie Discussion! [Manga] One Piece Anime Discussion Thread [\m/] Heavy Metal Thread Korean Music Discussion
Sports
2024 - 2025 Football Thread TeamLiquid Health and Fitness Initiative For 2023 Formula 1 Discussion
World Cup 2022
Tech Support
Gtx660 graphics card replacement Installation of Windows 10 suck at "just a moment" Computer Build, Upgrade & Buying Resource Thread
TL Community
TeamLiquid Team Shirt On Sale The Automated Ban List
Blogs
The Biochemical Cost of Gami…
TrAiDoS
[Girl blog} My fema…
artosisisthebest
Sharpening the Filtration…
frozenclaw
ASL S20 English Commentary…
namkraft
StarCraft improvement
iopq
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1380 users

Neural networks

Blogs > Qzy
Post a Reply
1 2 Next All
Qzy
Profile Blog Joined July 2010
Denmark1121 Posts
Last Edited: 2010-09-17 13:20:14
September 17 2010 13:16 GMT
#1
Teamliquid community is pretty smart..

Does anyone understand neural networks and how they work with multiple layers? Got a bunch of questions for it, to even being able to understand it slightly - most scientific texts on neural networks are very strong in math, but not doing a good job explaining what the... is going on.

TG Sambo... Intel classic! Life of lively to live to life of full life thx to shield battery
Tabbris
Profile Blog Joined June 2010
Bangladesh2839 Posts
Last Edited: 2010-09-17 13:28:38
September 17 2010 13:28 GMT
#2
You should try the TL manpowerthread http://www.teamliquid.net/forum/viewmessage.php?topic_id=84245
Glacierz
Profile Blog Joined May 2010
United States1244 Posts
September 17 2010 13:34 GMT
#3
Why not start from Wikipedia
ZBiR
Profile Blog Joined August 2003
Poland1092 Posts
Last Edited: 2010-09-17 13:43:56
September 17 2010 13:42 GMT
#4
It depends on what type of network you have, but in the most basic version, each neuron receives signals from each neuron of previous layer, multilies each one by it's specific weight (each neuron has different set of weights for the signals from previous layer, usually it's the changing weights that are considered the learning element in a network) and sums them, then operates on that summed signal and sends the result to each neutron in the next layer. Simple
meeple
Profile Blog Joined April 2009
Canada10211 Posts
September 17 2010 14:03 GMT
#5
You should go ahead and ask the questions... and state what exactly you don't understand or what you do understand about them and you'll have a much better chance of getting a real answer.
Qzy
Profile Blog Joined July 2010
Denmark1121 Posts
Last Edited: 2010-09-17 14:27:39
September 17 2010 14:16 GMT
#6
Thanks for already answering.

Okay here's a few questions.

I get the basics of it - but ...

How many neurons should you use, with 2 inputs? Do you HAVE to use 2 neurons in the hidden layer, or can you simple use 1? Can you use 5? What's the benefit for using less/more?

You can have more hidden layers - but with what benefits? Should it have the same amount of neurons as the other hidden layers?

When teaching the NN how to play, for instance, tictactoe, do I give it training examples: This is the input, i expect this output...? How many examples does it need to adjust to play decent?

Can it generalize, once it has seen a few examples?
TG Sambo... Intel classic! Life of lively to live to life of full life thx to shield battery
Glacierz
Profile Blog Joined May 2010
United States1244 Posts
September 17 2010 14:33 GMT
#7
Based on your questions, I suggest you start out with Bayesian networks first before getting into neural networks.
Qzy
Profile Blog Joined July 2010
Denmark1121 Posts
September 17 2010 14:39 GMT
#8
On September 17 2010 23:33 Glacierz wrote:
Based on your questions, I suggest you start out with Bayesian networks first before getting into neural networks.


Can't :/. I'm following my specialization course. This week it's neural networks, where we have to make a ludo player (in 1 week), next up is generic algorithms and then reinforcement learning.

Sigh.
TG Sambo... Intel classic! Life of lively to live to life of full life thx to shield battery
Cambium
Profile Blog Joined June 2004
United States16368 Posts
Last Edited: 2010-09-17 14:57:41
September 17 2010 14:55 GMT
#9
On September 17 2010 23:16 Qzy wrote:
Thanks for already answering.

Okay here's a few questions.

I get the basics of it - but ...

How many neurons should you use, with 2 inputs? Do you HAVE to use 2 neurons in the hidden layer, or can you simple use 1? Can you use 5? What's the benefit for using less/more?

You can have more hidden layers - but with what benefits? Should it have the same amount of neurons as the other hidden layers?

When teaching the NN how to play, for instance, tictactoe, do I give it training examples: This is the input, i expect this output...? How many examples does it need to adjust to play decent?

Can it generalize, once it has seen a few examples?


It's been a while since I took ML, so I don't remember too much about NN, I'll give it a shot

You should have at least N+1 nodes in each layer where N is your # of input nodes. You can, of course, build a layer with any number of nodes, you just won't reach the accuracy you desire. I remember at one point, this made intuitive sense to me, but I don't remember it well enough to describe it back to you. There is no hard restriction on the number of neurons in each layer, this is something you have to experiment by running the NN multiple times wrt your training data, and choose the one with the highest accuracy. You can also do this with any number of hidden layers. The reason why you shouldn't use excessive number of neurons and hidden layers is to avoid overfitting (I think...).

Each layer can have a different number of nodes, and the optimal number of layers depend largely on your input data and your activation function (such as gradient descent, sigmoid). Too few nodes cause underfitting, and too many nodes cause overfitting (again, I think...).

Tic-Tac-Toe is actually a difficult problem to solve with NN (I'd use decision tree actually) since it's adaptive Your first task would be to digitize all of the moves in a given game (so every game is one piece of training datum), and the output would be win, lose and tie. Alternatively, you can assign state a value (much like Chess) so that every move can be a row in your training data.

I hope this helps.
When you want something, all the universe conspires in helping you to achieve it.
illu
Profile Blog Joined December 2008
Canada2531 Posts
September 17 2010 14:57 GMT
#10
Come to think of it, a professor at University of Toronto sort of specializes in this subject.
:]
Cambium
Profile Blog Joined June 2004
United States16368 Posts
September 17 2010 14:59 GMT
#11
In any case, neural networks are easy to implement in Matlab with the NN toolbox. The difficult part is to choose the correct activation function and the number of neurons and the number of layers (you can just let this run for days on a box)
When you want something, all the universe conspires in helping you to achieve it.
Qzy
Profile Blog Joined July 2010
Denmark1121 Posts
Last Edited: 2010-09-17 15:03:26
September 17 2010 15:02 GMT
#12
On September 17 2010 23:55 Cambium wrote:
Show nested quote +
On September 17 2010 23:16 Qzy wrote:
Thanks for already answering.

Okay here's a few questions.

I get the basics of it - but ...

How many neurons should you use, with 2 inputs? Do you HAVE to use 2 neurons in the hidden layer, or can you simple use 1? Can you use 5? What's the benefit for using less/more?

You can have more hidden layers - but with what benefits? Should it have the same amount of neurons as the other hidden layers?

When teaching the NN how to play, for instance, tictactoe, do I give it training examples: This is the input, i expect this output...? How many examples does it need to adjust to play decent?

Can it generalize, once it has seen a few examples?


It's been a while since I took ML, so I don't remember too much about NN, I'll give it a shot

You should have at least N+1 nodes in each layer where N is your # of input nodes. You can, of course, build a layer with any number of nodes, you just won't reach the accuracy you desire. I remember at one point, this made intuitive sense to me, but I don't remember it well enough to describe it back to you. There is no hard restriction on the number of neurons in each layer, this is something you have to experiment by running the NN multiple times wrt your training data, and choose the one with the highest accuracy. You can also do this with any number of hidden layers. The reason why you shouldn't use excessive number of neurons and hidden layers is to avoid overfitting (I think...).

Each layer can have a different number of nodes, and the optimal number of layers depend largely on your input data and your activation function (such as gradient descent, sigmoid). Too few nodes cause underfitting, and too many nodes cause overfitting (again, I think...).

Tic-Tac-Toe is actually a difficult problem to solve with NN (I'd use decision tree actually) since it's adaptive Your first task would be to digitize all of the moves in a given game (so every game is one piece of training datum), and the output would be win, lose and tie. Alternatively, you can assign state a value (much like Chess) so that every move can be a row in your training data.

I hope this helps.


Thanks it clears it up a bit..

Right now, I have to implement a ludo player - with a lot of possible states (like chess). Do i simply give it a few examples (inputs, and expected output), and it can generalize from these examples, once properly trained (output has reached desired)?
TG Sambo... Intel classic! Life of lively to live to life of full life thx to shield battery
Cambium
Profile Blog Joined June 2004
United States16368 Posts
September 17 2010 15:09 GMT
#13
On September 18 2010 00:02 Qzy wrote:
Show nested quote +
On September 17 2010 23:55 Cambium wrote:
On September 17 2010 23:16 Qzy wrote:
Thanks for already answering.

Okay here's a few questions.

I get the basics of it - but ...

How many neurons should you use, with 2 inputs? Do you HAVE to use 2 neurons in the hidden layer, or can you simple use 1? Can you use 5? What's the benefit for using less/more?

You can have more hidden layers - but with what benefits? Should it have the same amount of neurons as the other hidden layers?

When teaching the NN how to play, for instance, tictactoe, do I give it training examples: This is the input, i expect this output...? How many examples does it need to adjust to play decent?

Can it generalize, once it has seen a few examples?


It's been a while since I took ML, so I don't remember too much about NN, I'll give it a shot

You should have at least N+1 nodes in each layer where N is your # of input nodes. You can, of course, build a layer with any number of nodes, you just won't reach the accuracy you desire. I remember at one point, this made intuitive sense to me, but I don't remember it well enough to describe it back to you. There is no hard restriction on the number of neurons in each layer, this is something you have to experiment by running the NN multiple times wrt your training data, and choose the one with the highest accuracy. You can also do this with any number of hidden layers. The reason why you shouldn't use excessive number of neurons and hidden layers is to avoid overfitting (I think...).

Each layer can have a different number of nodes, and the optimal number of layers depend largely on your input data and your activation function (such as gradient descent, sigmoid). Too few nodes cause underfitting, and too many nodes cause overfitting (again, I think...).

Tic-Tac-Toe is actually a difficult problem to solve with NN (I'd use decision tree actually) since it's adaptive Your first task would be to digitize all of the moves in a given game (so every game is one piece of training datum), and the output would be win, lose and tie. Alternatively, you can assign state a value (much like Chess) so that every move can be a row in your training data.

I hope this helps.


Thanks it clears it up a bit..

Right now, I have to implement a ludo player - with a lot of possible states (like chess). Do i simply give it a few examples (inputs, and expected output), and it can generalize from these examples, once properly trained (output has reached desired)?


Well, you first need to classify your inputs and outputs. In a game of tic-tac-toe, say you are red, it would be along the lines of, how many red on each line (attack), how many blacks on each line (defence), and maybe a few more. Your output would be the quantification of the state after you place your piece. If you win or prevent a loss, it would probably be max, and go from there.

You would need a lot more data than a "few lines"; I would think in the order of hundreds if not thousands. I would try to find existing data for tic-tac-toe and see how experts classified the game. The best way to obtain data is to either find it, or to create an online version and ask your friends to play so that you can classify their respective inputs and outputs.
When you want something, all the universe conspires in helping you to achieve it.
Qzy
Profile Blog Joined July 2010
Denmark1121 Posts
September 17 2010 15:13 GMT
#14
On September 18 2010 00:09 Cambium wrote:
Show nested quote +
On September 18 2010 00:02 Qzy wrote:
On September 17 2010 23:55 Cambium wrote:
On September 17 2010 23:16 Qzy wrote:
Thanks for already answering.

Okay here's a few questions.

I get the basics of it - but ...

How many neurons should you use, with 2 inputs? Do you HAVE to use 2 neurons in the hidden layer, or can you simple use 1? Can you use 5? What's the benefit for using less/more?

You can have more hidden layers - but with what benefits? Should it have the same amount of neurons as the other hidden layers?

When teaching the NN how to play, for instance, tictactoe, do I give it training examples: This is the input, i expect this output...? How many examples does it need to adjust to play decent?

Can it generalize, once it has seen a few examples?


It's been a while since I took ML, so I don't remember too much about NN, I'll give it a shot

You should have at least N+1 nodes in each layer where N is your # of input nodes. You can, of course, build a layer with any number of nodes, you just won't reach the accuracy you desire. I remember at one point, this made intuitive sense to me, but I don't remember it well enough to describe it back to you. There is no hard restriction on the number of neurons in each layer, this is something you have to experiment by running the NN multiple times wrt your training data, and choose the one with the highest accuracy. You can also do this with any number of hidden layers. The reason why you shouldn't use excessive number of neurons and hidden layers is to avoid overfitting (I think...).

Each layer can have a different number of nodes, and the optimal number of layers depend largely on your input data and your activation function (such as gradient descent, sigmoid). Too few nodes cause underfitting, and too many nodes cause overfitting (again, I think...).

Tic-Tac-Toe is actually a difficult problem to solve with NN (I'd use decision tree actually) since it's adaptive Your first task would be to digitize all of the moves in a given game (so every game is one piece of training datum), and the output would be win, lose and tie. Alternatively, you can assign state a value (much like Chess) so that every move can be a row in your training data.

I hope this helps.


Thanks it clears it up a bit..

Right now, I have to implement a ludo player - with a lot of possible states (like chess). Do i simply give it a few examples (inputs, and expected output), and it can generalize from these examples, once properly trained (output has reached desired)?


Well, you first need to classify your inputs and outputs. In a game of tic-tac-toe, say you are red, it would be along the lines of, how many red on each line (attack), how many blacks on each line (defence), and maybe a few more. Your output would be the quantification of the state after you place your piece. If you win or prevent a loss, it would probably be max, and go from there.

You would need a lot more data than a "few lines"; I would think in the order of hundreds if not thousands. I would try to find existing data for tic-tac-toe and see how experts classified the game. The best way to obtain data is to either find it, or to create an online version and ask your friends to play so that you can classify their respective inputs and outputs.


Then it's good i got 3 more days to come up with a ludo player :D

God I love university with their "1 week to understand 50 years of AI, and implement it - kkthxbye"

. So lost in this - how's it possible to create a working neural network in a week.. seriously.
TG Sambo... Intel classic! Life of lively to live to life of full life thx to shield battery
Glacierz
Profile Blog Joined May 2010
United States1244 Posts
September 17 2010 16:03 GMT
#15
Tic-tac-toe is easily solved by alpha-beta pruning, no need for complex frameworks like NN
AcrossFiveJulys
Profile Blog Joined September 2005
United States3612 Posts
September 17 2010 16:05 GMT
#16
On September 18 2010 00:09 Cambium wrote:
Show nested quote +
On September 18 2010 00:02 Qzy wrote:
On September 17 2010 23:55 Cambium wrote:
On September 17 2010 23:16 Qzy wrote:
Thanks for already answering.

Okay here's a few questions.

I get the basics of it - but ...

How many neurons should you use, with 2 inputs? Do you HAVE to use 2 neurons in the hidden layer, or can you simple use 1? Can you use 5? What's the benefit for using less/more?

You can have more hidden layers - but with what benefits? Should it have the same amount of neurons as the other hidden layers?

When teaching the NN how to play, for instance, tictactoe, do I give it training examples: This is the input, i expect this output...? How many examples does it need to adjust to play decent?

Can it generalize, once it has seen a few examples?


It's been a while since I took ML, so I don't remember too much about NN, I'll give it a shot

You should have at least N+1 nodes in each layer where N is your # of input nodes. You can, of course, build a layer with any number of nodes, you just won't reach the accuracy you desire. I remember at one point, this made intuitive sense to me, but I don't remember it well enough to describe it back to you. There is no hard restriction on the number of neurons in each layer, this is something you have to experiment by running the NN multiple times wrt your training data, and choose the one with the highest accuracy. You can also do this with any number of hidden layers. The reason why you shouldn't use excessive number of neurons and hidden layers is to avoid overfitting (I think...).

Each layer can have a different number of nodes, and the optimal number of layers depend largely on your input data and your activation function (such as gradient descent, sigmoid). Too few nodes cause underfitting, and too many nodes cause overfitting (again, I think...).

Tic-Tac-Toe is actually a difficult problem to solve with NN (I'd use decision tree actually) since it's adaptive Your first task would be to digitize all of the moves in a given game (so every game is one piece of training datum), and the output would be win, lose and tie. Alternatively, you can assign state a value (much like Chess) so that every move can be a row in your training data.

I hope this helps.


Thanks it clears it up a bit..

Right now, I have to implement a ludo player - with a lot of possible states (like chess). Do i simply give it a few examples (inputs, and expected output), and it can generalize from these examples, once properly trained (output has reached desired)?


Well, you first need to classify your inputs and outputs. In a game of tic-tac-toe, say you are red, it would be along the lines of, how many red on each line (attack), how many blacks on each line (defence), and maybe a few more. Your output would be the quantification of the state after you place your piece. If you win or prevent a loss, it would probably be max, and go from there.

You would need a lot more data than a "few lines"; I would think in the order of hundreds if not thousands. I would try to find existing data for tic-tac-toe and see how experts classified the game. The best way to obtain data is to either find it, or to create an online version and ask your friends to play so that you can classify their respective inputs and outputs.


I wouldn't recommend using a neural network for learning a game unless integrated as part of a self play system. If you want to read about a way to kick some serious ass, look up reinforcement learning backgammon.

Cadmium is suggesting that you use the NN as a state utility evaluator (and then presumably use those evaluations to implement minimax?). That is a viable approach, but I think you could implement the evaluation step yourself and get pretty far and skip the NN part.

If you want to do this the simplest way possible, get someone (or a program) that plays the game pretty well and collect a lot of data saying "at this state, do action a". It will be important to choose your inputs wisely. You could describe the entire board state as your inputs, but that will make it harder for the NN to generalize. Instead you should consider coming up with some features of the state that are interesting.

As for the parameters, such as the number of hidden nodes, hidden layers, learning rate, momentum term, how much data you need, etc, you have to understand that there isn't hard theory that says you need exactly this much. In practice getting neural networks to work is a form of black magic: you must empirically determine a good parameter setting through your own intuition and lots and lots of experimentation.
Qzy
Profile Blog Joined July 2010
Denmark1121 Posts
Last Edited: 2010-09-17 16:10:22
September 17 2010 16:06 GMT
#17
On September 18 2010 01:03 Glacierz wrote:
Tic-tac-toe is easily solved by alpha-beta pruning, no need for complex frameworks like NN


You mean minmax not alpha-beta pruning. But alpha-beta pruning does help to speed up the search. But this is neural networks - always 2nd best method, but very suitable, when search space becomes too big, ie chess.

I'll try training my neural network with some common states in my game, where i know some good outputs - and then i hope it can generalize this to more states which looks like it.

Is this an okay way to do it? It's pretty slow to "hand feed" it everything.
TG Sambo... Intel classic! Life of lively to live to life of full life thx to shield battery
ToxNub
Profile Joined June 2010
Canada805 Posts
Last Edited: 2010-09-17 16:14:04
September 17 2010 16:11 GMT
#18
I've written a few neural networks by hand before. I don't really understand how (why) you would get a neural network to play tic-tac-toe tho. NNs are supervised learning algorithms, which means you need to already know the answer in advance. Your network just sorta "remembers" the answers you've trained it to remember. Granted, if you get enough data, you can provide a novel input and you MIGHT get novel output, but for your purposes you will likely just be "remembering" what to do given gamestate a, b, c... Boring. Not an interesting application of NN at all :p

When people used NNs to play chess or whatever, it's really not just a NN. The NN in those games is really just a function approximator that tells you whether or not a given gamestate (board) is "good". Both chess, backgammon, and tic-tac-toe all rely on sequential moves, which means you've added a temporal element. ML techniques like temporal difference learning have successfully been applied in the form of TD-gammon, TD-Chess (and probably TD-tic-tac-toe) and are more suited to your needs.
Qzy
Profile Blog Joined July 2010
Denmark1121 Posts
Last Edited: 2010-09-17 16:19:13
September 17 2010 16:17 GMT
#19
On September 18 2010 01:11 ToxNub wrote:
I've written a few neural networks by hand before. I don't really understand how (why) you would get a neural network to play tic-tac-toe tho. NNs are supervised learning algorithms, which means you need to already know the answer in advance. Your network just sorta "remembers" the answers you've trained it to remember. Granted, if you get enough data, you can provide a novel input and you MIGHT get novel output, but for your purposes you will likely just be "remembering" what to do given gamestate a, b, c... Boring. Not an interesting application of NN at all :p

When people used NNs to play chess or whatever, it's really not just a NN. The NN in those games is really just a function approximator that tells you whether or not a given gamestate (board) is "good". Both chess, backgammon, and tic-tac-toe all rely on sequential moves, which means you've added a temporal element. ML techniques like temporal difference learning have successfully been applied in the form of TD-gammon, TD-Chess (and probably TD-tic-tac-toe) and are more suited to your needs.


Actually I have to implement a ludo player for my AI course - but tictactoe is more simple to start out with (yes even tho it's complex solution to a simple question).

Like I wrote earlier, I'll try giving it some states, ie start state, and tell it: The correct output here is to move this piece. And some more states, and hope it can generalize from it.

Is that even possible?
TG Sambo... Intel classic! Life of lively to live to life of full life thx to shield battery
Glacierz
Profile Blog Joined May 2010
United States1244 Posts
Last Edited: 2010-09-17 16:31:13
September 17 2010 16:30 GMT
#20
I think you would need a huge training set for this to work unless you can develop a reasonable set of heuristics.

Had to do it for reversi player for my AI class, just used minimax with A-B pruning.
1 2 Next All
Please log in or register to reply.
Live Events Refresh
OSC
00:00
Elite Rising Star #16 - Day 3
Liquipedia
The PiG Daily
22:45
Best Games of SC
Reynor vs Zoun
Classic vs Clem
herO vs Solar
Serral vs TBD
PiGStarcraft483
LiquipediaDiscussion
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
PiGStarcraft483
Nina 204
trigger 1
StarCraft: Brood War
Backho 272
ggaemo 199
Leta 54
Noble 26
Icarus 6
Dota 2
monkeys_forever590
League of Legends
JimRising 667
Counter-Strike
Stewie2K950
Other Games
summit1g9153
tarik_tv8721
shahzam607
WinterStarcraft482
C9.Mang0417
Maynarde252
NeuroSwarm107
Trikslyr46
Organizations
Other Games
gamesdonequick1258
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 16 non-featured ]
StarCraft 2
• Berry_CruncH296
• practicex 43
• Mapu7
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
League of Legends
• Rush1648
• Stunt335
• HappyZerGling79
Upcoming Events
Replay Cast
5h 31m
Afreeca Starleague
5h 31m
JyJ vs TY
Bisu vs Speed
WardiTV Summer Champion…
6h 31m
Creator vs Rogue
MaxPax vs Cure
PiGosaur Monday
19h 31m
Afreeca Starleague
1d 5h
Mini vs TBD
Soma vs sSak
WardiTV Summer Champion…
1d 6h
Clem vs goblin
ByuN vs SHIN
Online Event
1d 19h
The PondCast
2 days
WardiTV Summer Champion…
2 days
Zoun vs Bunny
herO vs Solar
Replay Cast
2 days
[ Show More ]
LiuLi Cup
3 days
BSL Team Wars
3 days
Team Hawk vs Team Dewalt
Korean StarCraft League
3 days
CranKy Ducklings
4 days
SC Evo League
4 days
WardiTV Summer Champion…
4 days
Classic vs Percival
Spirit vs NightMare
[BSL 2025] Weekly
4 days
Sparkling Tuna Cup
5 days
SC Evo League
5 days
BSL Team Wars
5 days
Team Bonyth vs Team Sziky
Afreeca Starleague
6 days
Queen vs HyuN
EffOrt vs Calm
Wardi Open
6 days
Replay Cast
6 days
Liquipedia Results

Completed

Jiahua Invitational
uThermal 2v2 Main Event
HCC Europe

Ongoing

Copa Latinoamericana 4
BSL 20 Team Wars
KCM Race Survival 2025 Season 3
BSL 21 Qualifiers
ASL Season 20
CSL Season 18: Qualifier 1
SEL Season 2 Championship
WardiTV Summer 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1
BLAST.tv Austin Major 2025

Upcoming

CSLAN 3
CSL 2025 AUTUMN (S18)
LASL Season 20
BSL Season 21
BSL 21 Team A
RSL Revival: Season 2
Maestros of the Game
PGL Masters Bucharest 2025
Thunderpick World Champ.
MESA Nomadic Masters Fall
CS Asia Championships 2025
Roobet Cup 2025
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.