• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EST 16:58
CET 22:58
KST 06:58
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
TL.net Map Contest #21: Winners8Intel X Team Liquid Seoul event: Showmatches and Meet the Pros10[ASL20] Finals Preview: Arrival13TL.net Map Contest #21: Voting12[ASL20] Ro4 Preview: Descent11
Community News
Starcraft, SC2, HoTS, WC3, returning to Blizzcon!33$5,000+ WardiTV 2025 Championship6[BSL21] RO32 Group Stage4Weekly Cups (Oct 26-Nov 2): Liquid, Clem, Solar win; LAN in Philly2Weekly Cups (Oct 20-26): MaxPax, Clem, Creator win9
StarCraft 2
General
5.0.15 Patch Balance Hotfix (2025-10-8) RotterdaM "Serral is the GOAT, and it's not close" TL.net Map Contest #21: Winners Starcraft, SC2, HoTS, WC3, returning to Blizzcon! Weekly Cups (Oct 20-26): MaxPax, Clem, Creator win
Tourneys
$5,000+ WardiTV 2025 Championship Sparkling Tuna Cup - Weekly Open Tournament Constellation Cup - Main Event - Stellar Fest Merivale 8 Open - LAN - Stellar Fest Sea Duckling Open (Global, Bronze-Diamond)
Strategy
Custom Maps
Map Editor closed ?
External Content
Mutation # 498 Wheel of Misfortune|Cradle of Death Mutation # 497 Battle Haredened Mutation # 496 Endless Infection Mutation # 495 Rest In Peace
Brood War
General
[ASL20] Ask the mapmakers — Drop your questions BW General Discussion [BSL21] RO32 Group Stage BGH Auto Balance -> http://bghmmr.eu/ SnOw's ASL S20 Finals Review
Tourneys
[Megathread] Daily Proleagues [ASL20] Grand Finals [BSL21] RO32 Group B - Sunday 21:00 CET [BSL21] RO32 Group A - Saturday 21:00 CET
Strategy
Current Meta PvZ map balance How to stay on top of macro? Soma's 9 hatch build from ASL Game 2
Other Games
General Games
Should offensive tower rushing be viable in RTS games? Path of Exile Stormgate/Frost Giant Megathread Dawn of War IV Nintendo Switch Thread
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread SPIRED by.ASL Mafia {211640}
Community
General
US Politics Mega-thread Russo-Ukrainian War Thread Things Aren’t Peaceful in Palestine YouTube Thread Dating: How's your luck?
Fan Clubs
White-Ra Fan Club The herO Fan Club!
Media & Entertainment
[Manga] One Piece Anime Discussion Thread Movie Discussion! Korean Music Discussion Series you have seen recently...
Sports
2024 - 2026 Football Thread NBA General Discussion MLB/Baseball 2023 TeamLiquid Health and Fitness Initiative For 2023 Formula 1 Discussion
World Cup 2022
Tech Support
SC2 Client Relocalization [Change SC2 Language] Linksys AE2500 USB WIFI keeps disconnecting Computer Build, Upgrade & Buying Resource Thread
TL Community
The Automated Ban List Recent Gifted Posts
Blogs
Coffee x Performance in Espo…
TrAiDoS
Saturation point
Uldridge
DnB/metal remix FFO Mick Go…
ImbaTosS
Why we need SC3
Hildegard
Reality "theory" prov…
perfectspheres
Our Last Hope in th…
KrillinFromwales
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1653 users

legend of zelda math problem - Page 2

Blogs > calgar
Post a Reply
Prev 1 2 All
Adeny
Profile Blog Joined January 2009
Norway1233 Posts
December 24 2011 04:59 GMT
#21
On December 24 2011 13:50 Primadog wrote:
Rewording the OP as following:

Assuming all puzzles are solvable, 'perfect' play, and ignoring value of user time, is playing "thrill digger" profitable?

  • aka, is expected value E of the game greater than the cost of the game?
  • As calgar stated, to break even, E must exceed 37.5 (cost of the game 30 / 80% autolose rate)
  • The number of maps possible is a simple combination problem (20 pick 4), so 20! / 4! / 16! = 4845 maps possible
  • As Telegnosis stated, the minimum final score is 36:
    xxooo
    xxooo
    ooooo
    ooooo

    Let's call this formation min. There're 3 other version of this map possible, one for each corner. So four cases of Score(min) = 36.
  • The following formation scores 63 points:
    xxooo
    xoooo
    ooooo
    xoooo

    Let's call this formation b. There're 3 other version of this map possible, one for each corner. So four cases of Score(b) = 63



We need to find whether E > 37.5
  • The expected value of all cases of Score_b and all cases of Score_min is (4 x 36 + 4 x 63 ) / (4+4) = 49.5, which is more than 37.5.
  • All other map formulations besides Score(min) and Score(b) score higher than 37.5.
  • Therefore the expected value of the game must exceed 37.5.


Therefore, given the above assumptions, thriller digger is always profitable.


It was not given that all puzzles are "solvable", and the closest we can get to perfect play is picking the best squares. It's a probability problem, and as such you might not get to complete every puzzle without running in to a bomb.

Primadog
Profile Blog Joined April 2010
United States4411 Posts
Last Edited: 2011-12-24 05:07:54
December 24 2011 05:02 GMT
#22
There's no easy way to quantify user skill in solving problems, so assuming 'perfect play' is acceptable.

Assuming all problems are solvable, however, is less reasonable. However, I do not know whether there exists a formula for % of solvable and unsolvable minesweeper boards, so this was also a necessary assumption. Might be NP-complete.

We cannot/should not factor in user time tradeoff.

Without making these three assumptions, the question stated is essentially unsolvable.
Thank God and gunrun.
Adeny
Profile Blog Joined January 2009
Norway1233 Posts
Last Edited: 2011-12-24 05:17:04
December 24 2011 05:13 GMT
#23
On December 24 2011 14:02 Primadog wrote:
There's no easy way to quantify user skill in solving problems, so assuming 'perfect play' is acceptable.

Assuming all problems are solvable, however, is less reasonable. However, I do not know whether there exists a formula for % of solvable and unsolvable minesweeper boards, so this was also a necessary assumption.

We cannot/should not factor in user time tradeoff.

Without making these three assumptions, the question stated is essentially unsolvable.


It is absolutely not unsolveable, however it depends on your definition of 'perfect play'. It's a probability problem so assuming that the player is omnipotent is pointless, i.e. what's the chance of god picking the ace of hearts from a deck of cards? 1/1 of course.
So perfect play in this instance must mean that the player only picks the squares that give him the highest probability of success.

All problems are "solveable" in that it is possible to clean up the board before picking a bomb, but wether or not you'll be able to comes down to luck.

To find out if EV >= 37.5 we must find out if the average score one would get is >= 37.5 using an optimal strategy. If we can find this (which we can), we have solved the problem.

An approach was posted earlier that should give the optimal picking strategy (the databasing of all possible boards, etc). What is left to do is implement this or come up with a better approach.
Primadog
Profile Blog Joined April 2010
United States4411 Posts
Last Edited: 2011-12-24 05:37:51
December 24 2011 05:20 GMT
#24
On December 24 2011 14:13 Adeny wrote:
Show nested quote +
On December 24 2011 14:02 Primadog wrote:
There's no easy way to quantify user skill in solving problems, so assuming 'perfect play' is acceptable.

Assuming all problems are solvable, however, is less reasonable. However, I do not know whether there exists a formula for % of solvable and unsolvable minesweeper boards, so this was also a necessary assumption.

We cannot/should not factor in user time tradeoff.

Without making these three assumptions, the question stated is essentially unsolvable.


It is absolutely not unsolveable, however it depends on your definition of 'perfect play'. It's a probability problem so assuming that the player is omnipotent is pointless, i.e. what's the chance of god picking the ace of hearts from a deck of cards? 1/1 of course.
So perfect play in this instance must mean that the player only picks the squares that give him the highest probability of success.

All problems are "solveable" in that it is possible to clean up the board before picking a bomb, but wether or not you'll be able to comes down to luck.

To find out if EV >= 37.5 we must find out if the average score one would get is >= 37.5 using an optimal strategy. If we can find this (which we can), we have solved the problem.

An approach was posted earlier that should give the optimal picking strategy (the databasing of all possible boards, etc). What is left to do is implement this or come up with a better approach.


You're right and I don't disagree.

Even with perfect play, some minesweeper maps are unsolvable. There're many google-able discussions about this http://math.stackexchange.com/questions/42494/odds-of-winning-at-minesweeper-with-perfect-play

However, nobody has figured out a exact formula for how many percentage of unsolvable permutation exists for a board of given size and number of bombs. Without knowing how many unsolvable maps are there, the solution to the OP is also unsolvable. This is why I put forward a solution assuming that all maps are solvable, otherwise the question is unanswerable.

PS Perfect play aka optimal picking strategy does not exist, or else you just solved NP-complete (or so I was told).
Thank God and gunrun.
igotmyown
Profile Blog Joined April 2009
United States4291 Posts
Last Edited: 2011-12-24 05:38:20
December 24 2011 05:35 GMT
#25
20C4 is a relatively small number, though, so it's certainly not theoretically or practically unsolvable.
4854. Very doable, if you can automate the strategy.

If someone could whip up an online 5x4x5 minesweeper, that would be helpful.
Adeny
Profile Blog Joined January 2009
Norway1233 Posts
December 24 2011 05:36 GMT
#26
On December 24 2011 14:20 Primadog wrote:
Show nested quote +
On December 24 2011 14:13 Adeny wrote:
On December 24 2011 14:02 Primadog wrote:
There's no easy way to quantify user skill in solving problems, so assuming 'perfect play' is acceptable.

Assuming all problems are solvable, however, is less reasonable. However, I do not know whether there exists a formula for % of solvable and unsolvable minesweeper boards, so this was also a necessary assumption.

We cannot/should not factor in user time tradeoff.

Without making these three assumptions, the question stated is essentially unsolvable.


It is absolutely not unsolveable, however it depends on your definition of 'perfect play'. It's a probability problem so assuming that the player is omnipotent is pointless, i.e. what's the chance of god picking the ace of hearts from a deck of cards? 1/1 of course.
So perfect play in this instance must mean that the player only picks the squares that give him the highest probability of success.

All problems are "solveable" in that it is possible to clean up the board before picking a bomb, but wether or not you'll be able to comes down to luck.

To find out if EV >= 37.5 we must find out if the average score one would get is >= 37.5 using an optimal strategy. If we can find this (which we can), we have solved the problem.

An approach was posted earlier that should give the optimal picking strategy (the databasing of all possible boards, etc). What is left to do is implement this or come up with a better approach.


Even with perfect play, some minesweeper maps are unsolvable. There're many google-able discussions about this http://math.stackexchange.com/questions/42494/odds-of-winning-at-minesweeper-with-perfect-play

However, nobody has figured out a exact formula for how many percentage of unsolvable permutation exists for a board of given size and number of bombs.


Pretty interesting, and I didn't think about the fact that the mines might be generated after your first choice in OPs game too, could someone who has access test if it's possible to hit a bomb on your first pick?

Disregarding minesweeper, in the case of OPs problem specifically, we don't need to clear every board every time, we just need to get an average score of 37.5. So because of this we can ignore if puzzles are completely solveable or not. I'll try to implement a naive strategy (which might be enough if the margin of error is pretty big, i.e. maybe we don't need perfect play for all the corner cases) the next time I remember this thread, but for now I have to hit the sack.
Primadog
Profile Blog Joined April 2010
United States4411 Posts
December 24 2011 05:42 GMT
#27
On December 24 2011 14:36 Adeny wrote:
Show nested quote +
On December 24 2011 14:20 Primadog wrote:
On December 24 2011 14:13 Adeny wrote:
On December 24 2011 14:02 Primadog wrote:
There's no easy way to quantify user skill in solving problems, so assuming 'perfect play' is acceptable.

Assuming all problems are solvable, however, is less reasonable. However, I do not know whether there exists a formula for % of solvable and unsolvable minesweeper boards, so this was also a necessary assumption.

We cannot/should not factor in user time tradeoff.

Without making these three assumptions, the question stated is essentially unsolvable.


It is absolutely not unsolveable, however it depends on your definition of 'perfect play'. It's a probability problem so assuming that the player is omnipotent is pointless, i.e. what's the chance of god picking the ace of hearts from a deck of cards? 1/1 of course.
So perfect play in this instance must mean that the player only picks the squares that give him the highest probability of success.

All problems are "solveable" in that it is possible to clean up the board before picking a bomb, but wether or not you'll be able to comes down to luck.

To find out if EV >= 37.5 we must find out if the average score one would get is >= 37.5 using an optimal strategy. If we can find this (which we can), we have solved the problem.

An approach was posted earlier that should give the optimal picking strategy (the databasing of all possible boards, etc). What is left to do is implement this or come up with a better approach.


Even with perfect play, some minesweeper maps are unsolvable. There're many google-able discussions about this http://math.stackexchange.com/questions/42494/odds-of-winning-at-minesweeper-with-perfect-play

However, nobody has figured out a exact formula for how many percentage of unsolvable permutation exists for a board of given size and number of bombs.


Pretty interesting, and I didn't think about the fact that the mines might be generated after your first choice in OPs game too, could someone who has access test if it's possible to hit a bomb on your first pick?

Disregarding minesweeper, in the case of OPs problem specifically, we don't need to clear every board every time, we just need to get an average score of 37.5. So because of this we can ignore if puzzles are completely solveable or not. I'll try to implement a naive strategy (which might be enough if the margin of error is pretty big, i.e. maybe we don't need perfect play for all the corner cases) the next time I remember this thread, but for now I have to hit the sack.


Ah, this strategy could work! Although I imagine it can only prove E > 37.5 but never E < 37.5
Thank God and gunrun.
infinitestory
Profile Blog Joined April 2010
United States4053 Posts
December 24 2011 07:25 GMT
#28
I made a pretty crude version of this in mathematica, and I tried starting with the upper left corner. Excluding the times I exploded on click one, I scored in the 50s most of the time. Man, I'm lucky.
code:
+ Show Spoiler +
BombList = Table[Table[0, {5}], {5}];
ButtonList = Table[Table["?", {5}], {5}];
While[Sum[k, {k, Flatten[BombList]}] < 4,
BombList[[RandomInteger[{1, 5}], RandomInteger[{1, 5}]]] = 1]
CheckBomb[x_, y_] :=
If[1 <= x <= 5 && 1 <= y <= 5, If[BombList[[x, y]] == 1, 1, 0], 0]
CheckScore[x_, y_] :=
If[CheckBomb[x, y] == 1, 0,
Switch[CheckBomb[x - 1, y] + CheckBomb[x, y - 1] +
CheckBomb[x + 1, y] + CheckBomb[x, y + 1], 0, 1, 1, 5, 2, 5, 3,
20, 4, 20]]
score = 0;
ThrillButton[x_, y_] :=
Button[Dynamic[ButtonList[[x, y]]],
If[ButtonList[[x, y]] == "?", score += CheckScore[x, y]];
If[CheckScore[x, y] == 0, ButtonList[[x, y]] = "!",
ButtonList[[x, y]] = CheckScore[x, y]]]
Dynamic[score]
Grid[Table[Table[ThrillButton[i, j], {i, 5}], {j, 5}]]
Translator:3
calgar
Profile Blog Joined November 2007
United States1277 Posts
Last Edited: 2011-12-24 15:44:16
December 24 2011 15:39 GMT
#29
On December 24 2011 12:36 Adeny wrote:
Show nested quote +
On December 24 2011 12:26 calgar wrote:
On December 24 2011 12:13 Adeny wrote:
Running it 100,000 times and just picking blindly, I get an average score of 11. That doesn't feel like it's correct though, but I checked manually and I get the right scores for the right boards. What am I missing? C# code here (albeit very messy, it's 4am and christmas, I don't feel like thinking) http://pastie.org/3065188
Hm, is that just blind picking? edit - ah yeah, it is. Well if every square is randomly picked then that sounds like it makes sense. The trick here is that strategy would let you get much higher than that on average, though. Ie... if you run into a 20 rupee, then you automatically have a very good idea where 3 (or 4) of the bombs are, and can pick through the rest of the board. I have no idea how to program that though pfft..


Yup just completely at random.

So let's talk strategy. First of, the corners are, on average, just as risky as the mid squares, but give far fewer points.
If we pick a square and get 1 rupee, we know that all squares around it are safe. This works recursively until we run out of squares that give 1 rupee (that are connected at least).
For squares that give 5 or 20 I think it's better to avoid all adjacent squares temporarily and pick at random again.
If we run out of squares that are 1. not adjacent to a 1-rupee square, and 2. not a corner, we need to weigh the risk of picking corner vs. the risk of picking next to a square that gave 5 or 20 rupees. We need to take 2 things in cosideration: How many squares could be bombs around the square we are considering to pick, and how likely is it that the square we are picking is a bomb. I think that covers everything, need some time to work on the specifics.

Edit: By corner I mean corner/edge.
The corner is, on average, just as risky. But I think there might be some advantage to the corner anyways. It is more likely to be a 'safe' 1 rupee square, helping you reveal more adjacent territory safely and get more information. If it is a 20 rupee (very unlikely) then your EV shoots up drastically. Even with a 5 rupee you have narrowed down 1 or 2 mines to within a 4 square radius. Whereas before you had a 0.20 chance of losing randomly, with a 5 rupee in the corner the odds are now 0.125 with 2 mines or 0.1875 if only one is revealed.

I agree that avoiding adjacent squares temporarily is the safest way. Weighing the risk of picking a new square vs. next to where you think bombs might be is tricky though. Higher reward, higher risk.

After the corners are gone, do you think an edge with 5 surrounding is a better pick than in the middle with no other information?

And the bombs are generated before you pick so you can lose on your first try.
Adeny
Profile Blog Joined January 2009
Norway1233 Posts
December 24 2011 20:58 GMT
#30
On December 25 2011 00:39 calgar wrote:
Show nested quote +
On December 24 2011 12:36 Adeny wrote:
On December 24 2011 12:26 calgar wrote:
On December 24 2011 12:13 Adeny wrote:
Running it 100,000 times and just picking blindly, I get an average score of 11. That doesn't feel like it's correct though, but I checked manually and I get the right scores for the right boards. What am I missing? C# code here (albeit very messy, it's 4am and christmas, I don't feel like thinking) http://pastie.org/3065188
Hm, is that just blind picking? edit - ah yeah, it is. Well if every square is randomly picked then that sounds like it makes sense. The trick here is that strategy would let you get much higher than that on average, though. Ie... if you run into a 20 rupee, then you automatically have a very good idea where 3 (or 4) of the bombs are, and can pick through the rest of the board. I have no idea how to program that though pfft..


Yup just completely at random.

So let's talk strategy. First of, the corners are, on average, just as risky as the mid squares, but give far fewer points.
If we pick a square and get 1 rupee, we know that all squares around it are safe. This works recursively until we run out of squares that give 1 rupee (that are connected at least).
For squares that give 5 or 20 I think it's better to avoid all adjacent squares temporarily and pick at random again.
If we run out of squares that are 1. not adjacent to a 1-rupee square, and 2. not a corner, we need to weigh the risk of picking corner vs. the risk of picking next to a square that gave 5 or 20 rupees. We need to take 2 things in cosideration: How many squares could be bombs around the square we are considering to pick, and how likely is it that the square we are picking is a bomb. I think that covers everything, need some time to work on the specifics.

Edit: By corner I mean corner/edge.
The corner is, on average, just as risky. But I think there might be some advantage to the corner anyways. It is more likely to be a 'safe' 1 rupee square, helping you reveal more adjacent territory safely and get more information. If it is a 20 rupee (very unlikely) then your EV shoots up drastically. Even with a 5 rupee you have narrowed down 1 or 2 mines to within a 4 square radius. Whereas before you had a 0.20 chance of losing randomly, with a 5 rupee in the corner the odds are now 0.125 with 2 mines or 0.1875 if only one is revealed.

I agree that avoiding adjacent squares temporarily is the safest way. Weighing the risk of picking a new square vs. next to where you think bombs might be is tricky though. Higher reward, higher risk.

After the corners are gone, do you think an edge with 5 surrounding is a better pick than in the middle with no other information?

And the bombs are generated before you pick so you can lose on your first try.


I'm not entierly convinced that corners are better, because if you get a 1-pointer in the corner, you only get to open 3 squares, if you get a 1-pointer in the middle, you get to open 8. It's then more likely that one of those 8 will be a one-pointer, leading to more points on average I would think. I don't know how I would begin calculating this though.
Adeny
Profile Blog Joined January 2009
Norway1233 Posts
December 24 2011 23:11 GMT
#31
Fixed a silly coding error (5am coding \o/), that bumped the average up to 16. Then I added checking for ever square around 1-point squares, that puts the average score 28. I'll add more later, but I don't feel like coding the method of databasing all boards because christmas time is relaxing-time, and that would take a lot of coding.

Oh and for proving that it's not EV+, that can be done if we can prove which picking strategy is optimal, and if that strategy doesn't hold up then EV must be negative.
Adeny
Profile Blog Joined January 2009
Norway1233 Posts
Last Edited: 2011-12-26 02:30:59
December 26 2011 02:23 GMT
#32
Added some more changes, now an average score of ~35 but this takes into account the times that you pick bombs on your first try, so it only has to be over 30 to be EV+. The simple strategy (far from optimal) I used is:

- Pick corners first
- If you open up a square that gives 1 score, open everything around it too
- Otherwise just pick at random

That's all it takes to beat this, code below (note: super messy, don't try this at home etc)
http://pastie.org/3073168
Primadog
Profile Blog Joined April 2010
United States4411 Posts
December 26 2011 02:34 GMT
#33
Looks like the answer is almost certainly yes based on your research, adeny.
Thank God and gunrun.
Prev 1 2 All
Please log in or register to reply.
Live Events Refresh
LAN Event
18:00
Stellar Fest: Day 1
Gerald vs Harstem
ByuN vs Maplez
FuturE vs FoxeR
Zoun vs Mixu
ComeBackTV 768
UrsaTVCanada517
IndyStarCraft 267
CranKy Ducklings204
Liquipedia
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
IndyStarCraft 267
JuggernautJason97
UpATreeSC 95
Railgan 70
StarCraft: Brood War
White-Ra 242
Counter-Strike
pashabiceps1306
Heroes of the Storm
Liquid`Hasu539
Other Games
tarik_tv8830
Grubby4793
fl0m542
Mlord536
shahzam413
B2W.Neo343
ceh9183
ToD158
C9.Mang0132
ZombieGrub36
mouzStarbuck23
fpsfer 1
Organizations
Counter-Strike
PGL140
StarCraft 2
angryscii 3
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 19 non-featured ]
StarCraft 2
• Hupsaiya 52
• musti20045 8
• Adnapsc2 5
• Dystopia_ 3
• Kozan
• Migwel
• AfreecaTV YouTube
• sooper7s
• intothetv
• IndyKCrew
• LaughNgamezSOOP
StarCraft: Brood War
• HerbMon 36
• STPLYoutube
• ZZZeroYoutube
• BSLYoutube
League of Legends
• imaqtpie2762
• TFBlade1082
Other Games
• Shiphtur251
• tFFMrPink 10
Upcoming Events
Korean StarCraft League
5h 2m
CranKy Ducklings
12h 2m
IPSL
20h 2m
dxtr13 vs OldBoy
Napoleon vs Doodle
LAN Event
20h 2m
BSL 21
22h 2m
Gosudark vs Kyrie
Gypsy vs Sterling
UltrA vs Radley
Dandy vs Ptak
Replay Cast
1d 1h
Sparkling Tuna Cup
1d 12h
WardiTV Korean Royale
1d 14h
IPSL
1d 20h
JDConan vs WIZARD
WolFix vs Cross
LAN Event
1d 20h
[ Show More ]
BSL 21
1d 22h
spx vs rasowy
HBO vs KameZerg
Cross vs Razz
dxtr13 vs ZZZero
Replay Cast
2 days
Wardi Open
2 days
WardiTV Korean Royale
3 days
Replay Cast
4 days
Kung Fu Cup
4 days
Classic vs Solar
herO vs Cure
Reynor vs GuMiho
ByuN vs ShoWTimE
Tenacious Turtle Tussle
5 days
The PondCast
5 days
RSL Revival
5 days
Solar vs Zoun
MaxPax vs Bunny
Kung Fu Cup
5 days
WardiTV Korean Royale
5 days
RSL Revival
6 days
Classic vs Creator
Cure vs TriGGeR
Kung Fu Cup
6 days
Liquipedia Results

Completed

BSL 21 Points
SC4ALL: StarCraft II
Eternal Conflict S1

Ongoing

C-Race Season 1
IPSL Winter 2025-26
KCM Race Survival 2025 Season 4
SOOP Univ League 2025
YSL S2
Stellar Fest: Constellation Cup
IEM Chengdu 2025
PGL Masters Bucharest 2025
Thunderpick World Champ.
CS Asia Championships 2025
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual

Upcoming

BSL Season 21
SLON Tour Season 2
BSL 21 Non-Korean Championship
Acropolis #4
IPSL Spring 2026
HSC XXVIII
RSL Offline Finals
WardiTV 2025
RSL Revival: Season 3
META Madness #9
BLAST Bounty Winter 2026: Closed Qualifier
eXTREMESLAND 2025
ESL Impact League Season 8
SL Budapest Major 2025
BLAST Rivals Fall 2025
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.