• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 07:52
CEST 13:52
KST 20:52
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
RSL Season 1 - Final Week6[ASL19] Finals Recap: Standing Tall12HomeStory Cup 27 - Info & Preview18Classic wins Code S Season 2 (2025)16Code S RO4 & Finals Preview: herO, Rogue, Classic, GuMiho0
Community News
Weekly Cups (July 7-13): Classic continues to roll2Team TLMC #5 - Submission extension1Firefly given lifetime ban by ESIC following match-fixing investigation17$25,000 Streamerzone StarCraft Pro Series announced7Weekly Cups (June 30 - July 6): Classic Doubles7
StarCraft 2
General
RSL Revival patreon money discussion thread Weekly Cups (July 7-13): Classic continues to roll Esports World Cup 2025 - Final Player Roster TL Team Map Contest #5: Presented by Monster Energy Team TLMC #5 - Submission extension
Tourneys
RSL: Revival, a new crowdfunded tournament series $5,100+ SEL Season 2 Championship (SC: Evo) WardiTV Mondays Sparkling Tuna Cup - Weekly Open Tournament FEL Cracov 2025 (July 27) - $8000 live event
Strategy
How did i lose this ZvP, whats the proper response Simple Questions Simple Answers
Custom Maps
External Content
Mutation # 482 Wheel of Misfortune Mutation # 481 Fear and Lava Mutation # 480 Moths to the Flame Mutation # 479 Worn Out Welcome
Brood War
General
Flash Announces Hiatus From ASL BW General Discussion A cwal.gg Extension - Easily keep track of anyone [Guide] MyStarcraft [ASL19] Finals Recap: Standing Tall
Tourneys
[BSL20] Non-Korean Championship 4x BSL + 4x China [Megathread] Daily Proleagues 2025 ACS Season 2 Qualifier Small VOD Thread 2.0
Strategy
Simple Questions, Simple Answers I am doing this better than progamers do.
Other Games
General Games
Nintendo Switch Thread Stormgate/Frost Giant Megathread Path of Exile CCLP - Command & Conquer League Project The PlayStation 5
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
The Accidental Video Game Porn Archive US Politics Mega-thread Russo-Ukrainian War Thread Porn and Stuff Summer Games Done Quick 2025!
Fan Clubs
SKT1 Classic Fan Club! Maru Fan Club
Media & Entertainment
Movie Discussion! [Manga] One Piece Anime Discussion Thread [\m/] Heavy Metal Thread
Sports
2024 - 2025 Football Thread Formula 1 Discussion NBA General Discussion TeamLiquid Health and Fitness Initiative For 2023 NHL Playoffs 2024
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
The Automated Ban List
Blogs
Men Take Risks, Women Win Ga…
TrAiDoS
momentary artworks from des…
tankgirl
from making sc maps to makin…
Husyelt
StarCraft improvement
iopq
Trip to the Zoo
micronesia
Customize Sidebar...

Website Feedback

Closed Threads



Active: 608 users

StarCraft II: DeepMind Demonstration: Jan 24 - Page 3

Forum Index > SC2 General
585 CommentsPost a Reply
Prev 1 2 3 4 5 28 29 30 Next All
Poopi
Profile Blog Joined November 2010
France12792 Posts
January 23 2019 07:39 GMT
#41
I hope it'll be interesting :o
WriterMaru
Loccstana
Profile Blog Joined November 2012
United States833 Posts
January 23 2019 07:47 GMT
#42
I hope we will get a Bo31 showmatch between deepmind and avilo!
[url]http://i.imgur.com/lw2yN.jpg[/url]
MockHamill
Profile Joined March 2010
Sweden1798 Posts
January 23 2019 07:50 GMT
#43
It would be awesome if DeepMind lost the match, and then wrote a whine post on TL about it.
deacon.frost
Profile Joined February 2013
Czech Republic12129 Posts
January 23 2019 08:01 GMT
#44
On January 23 2019 16:47 Loccstana wrote:
I hope we will get a Bo31 showmatch between deepmind and avilo!

Nah, if the Deepmind is really good let it play Avilo so Avilo doesn't know he's playing it. And let us bet how many cheater calls will be made. Then we can give those money to some charity
I imagine France should be able to take this unless Lilbow is busy practicing for Starcraft III. | KadaverBB is my fairy ban mother.
Lazzarus
Profile Joined December 2008
Faroe Islands114 Posts
January 23 2019 08:17 GMT
#45
So this is another AI playing SCII?

Grumbels
Profile Blog Joined May 2009
Netherlands7031 Posts
Last Edited: 2019-01-23 08:41:18
January 23 2019 08:40 GMT
#46
AlphaZero becoming the strongest engine in a matter of hours is a bit deceiving, given that it still required fifty million games of practice and computing a new version of the network every 25k games. It was estimated to take months for the Leela project (open source imitation of AZ), which is distributed on hundreds of computers. Google just has really powerful hardware.

There are some interesting quirks with Leela. For instance, it's not capable of playing endgames efficiently, it seemingly aimlessly moves around, making moves that don't lose the advantage. It doesn't "get to the point". If an SC2 AI is built on the same concept, expect it to not be able to finish off games quickly and take an hour to mine out the entire map and build a fleet of random units to randomly move around the map.
Another quirk of the project is that the algorithm uses not just the current move as input, but also the history of moves. This gives it some measure of what part of the board to pay "attention" to. It also means that if you give it a random position as input, without history, that it can't function. As far as I know Leela is useless in solving tactical puzzles and in handicap games without training it first.
Leela also typically doesn't understand theory of endgames. It doesn't just play them weirdly, but it also doesn't grasp some almost mathematical ideas such as identifying a class of endgames that are drawn despite material imbalances (opposite color bishops, wrong color bishop).
It's apparently also not better at fortress positions, where you have material disadvantages, but your position can't be cracked. There are some known positions like these, and it was hoped that neural networks would be better at them, and would be capable of reasoning that these are a special class of positions that require a different approach. But it doesn't really seem like it.

Leela is also probably already better than Stockfish if you have bad hardware and no opening book. You can imagine that if there was a market for SC2 bots, that they could have opening books updated for every patch and which would have a team of people dedicated to keeping track of the meta and adding knowledge of it to the bot. But Deepmind's AI would use self-learning, i.e. only playing itself and developing its own meta. I don't know if that would make it easier or harder to beat as a human. I think the tree-search method for chess is bound to scale better with hardware than a neural network approach, given that chess is theoretically solvable with tree search. But this method would be useless for SC2, unless the AI uses some sort of abstraction of strategy and tries to think ahead. But I don't think you really need to think ahead in SC2 to get decent results. If you just react to your opponent and have perfect, bot-like control, you will win.
Well, now I tell you, I never seen good come o' goodness yet. Him as strikes first is my fancy; dead men don't bite; them's my views--amen, so be it.
Grumbels
Profile Blog Joined May 2009
Netherlands7031 Posts
Last Edited: 2019-01-23 08:55:19
January 23 2019 08:52 GMT
#47
The allegation against AlphaZero was that it used superior hardware, match conditions with no opening book, time controls not suited to Stockfish and which are not standard in tournaments, and an old version of Stockfish. That's probably why they did a rematch with Stockfish a while ago, but they still refuse to just participate in computer chess tournaments, or make their engine available somehow. If you compare this with Stockfish, which has a long history as an open source chess engine, you can imagine community reaction to the outside usurper.

Also, I heard a pro player say that an engine such as Leela would be less useful than Stockfish in preparing, because the latter is tactically superior, while the former is strategically superior. But humans are already good at strategy, they just need to make use of their tactical ability of engines to check their ideas and openings for tactical flaws. Leela's is unreliable because it doesn't have concrete reasons for preferring one move over the other, just a strategical intuition. Whereas Stockfish can instantly tell you if there are tactical problems with a move and produce a refutation. It might be the case that AlphaZero will remain a novelty for computer chess enthusiasts.

Especially since Leela and AlphaZero run on TPU/GPU's, not CPU's, afaik, so if you want to use both locally, you have to invest in both a good graphic card and a good processor.
Well, now I tell you, I never seen good come o' goodness yet. Him as strikes first is my fancy; dead men don't bite; them's my views--amen, so be it.
alexanderzero
Profile Joined June 2008
United States659 Posts
Last Edited: 2019-01-23 09:07:39
January 23 2019 09:07 GMT
#48
I think the tree-search method for chess is bound to scale better with hardware than a neural network approach, given that chess is theoretically solvable with tree search.


This would suggest otherwise:

[image loading]

Isn't go also theoretically solvable with a search tree?
I am a tournament organizazer.
xongnox
Profile Joined November 2011
540 Posts
January 23 2019 09:34 GMT
#49
It will be time to talk about human-like "physical" limitations for the AI.
Out-microing and out-multitasking everyone by playing 30.000 APMs and 100 screens/second is surely automaton-2000 impressive to watch one or two time, but is not very conclusive for the intelligence part.

I guess they done it right and have set limiting factors as parameters (like 250/apms max, max actions per second, max screens per second, human-like time mouse movements, etc, etc. )
Grumbels
Profile Blog Joined May 2009
Netherlands7031 Posts
Last Edited: 2019-01-23 11:15:50
January 23 2019 10:26 GMT
#50
On January 23 2019 18:07 alexanderzero wrote:
Show nested quote +
I think the tree-search method for chess is bound to scale better with hardware than a neural network approach, given that chess is theoretically solvable with tree search.


This would suggest otherwise:

[image loading]

Isn't go also theoretically solvable with a search tree?

AlphaZero claimed that their approach scaled well, iirc they had extremely good hardware for the recent rematch. On the other hand, there is some reason to doubt their work, since they might be more familiar setting up their own engine versus setting up Stockfish. Leela seems to do worse than Stockfish on good hardware / longer time controls. But I'm not sure, since e.g. people complain about hardware set-ups for computer chess tournaments all the time, since now it's the case that you have a prominent engine that requires a different set-up. There are also different ways of comparing hardware, e.g. price or energy consumption.

Go is comparable to chess, but is has significantly more possibilities per move than chess. There existed engines using the chess-like tree search for Go, but they were pretty bad because they get lost in all the variations. The neural network approach works much better there. Chess is interesting since both approaches seem fairly equal, so you can investigate scaling more meaningfully.

And there's no real point in comparing humans to AlphaZero, since humans are much worse.

edit: just a point about terminology, it's misleading to say that Stockfish uses tree search while AlphaZero uses neural networks. Because AlphaZero also uses (MC) tree search and Stockfish uses an evaluation function with weights tuned with machine learning tools. Given the obvious weaknesses that Leela possesses (and presumably AlphaZero too), the future best chess engine is probably somewhere in the middle between current SF and AZ.
Well, now I tell you, I never seen good come o' goodness yet. Him as strikes first is my fancy; dead men don't bite; them's my views--amen, so be it.
gpanda.sc2
Profile Joined January 2019
20 Posts
January 23 2019 15:31 GMT
#51
On January 23 2019 12:50 imCHIEN wrote:
vs $O$ to see how AI deals with cheese
vs Maru to see how AI deals with his creative
vs Serral to see how AI deals with a strong late game opponent.


vs TY to see all the above at one time.
I love TY.
DreamOen
Profile Joined March 2010
Spain1400 Posts
January 23 2019 15:44 GMT
#52
AI with zero limitations in actions per minute and micro it will just outright win. Like the microBot showcase that was around showing 1 zerling a time dieing on a clump of zerlings.
But making it look like human problem solving and winning due to strategy and not insane sharp micro/multitask would be a really different thing.
Tester | MC | Crank | Flash | Jaedong | MVP
neutralrobot
Profile Joined July 2011
Australia1025 Posts
Last Edited: 2019-01-23 15:59:06
January 23 2019 15:57 GMT
#53
On January 23 2019 11:53 KalWarkov wrote:
Show nested quote +
On January 23 2019 11:16 neutralrobot wrote:
On January 23 2019 10:53 ZigguratOfUr wrote:
On January 23 2019 06:17 Ronski wrote:
On January 23 2019 05:14 ZigguratOfUr wrote:
I hope the deepmind team is more open about what they produce. Show-matches are all very well, but giving players the opportunity to out-mindgame the AI afterwards would be interesting. AlphaZero was somewhat disappointing in the sense that no one really has a good sense of exactly how good it is at Shogi or Chess.


Didn't they make it pretty clear that its the best chess engine there is atm? Beating the strongest engine at chess means that no human player could ever hope to beat it so at least when it comes to chess I would say its clear that AlphaZero is the best there is.


I mean probably? But even when their paper was eventually released, it's still just a bunch of games against an old version of Stockfish in circumstances completely controlled, set up, and chosen to be favourable by the Deepmind team. The newest version of Stockfish can also beat the older version of Stockfish by about the same margin.

But arguing who is the best and stuff like that isn't too meaningful in the first place (it isn't of any importance if AlphaZero is the best or the second best)--the important thing is the machine learning research. And with Deepmind controlling everything about their research there's no room for other people to investigate things like whether AlphaZero with the current training would also be able to play Chess960 or adapt to starting with a piece handicap and so on and so forth.

It would be very disappointing if AlphaStarcraft came out and crushed Serral, Maru and Stats in showmatches and got shelved never to see the light again, leaving people to wonder about how AlphaStarcraft would react to (for example) playing on an island map, or how it would defend a cannon rush.


Well, actually... They recently played more games vs Stockfish in better conditions and AlphaZero comprehensively destroyed Stockfish. Also, they released the algorithm, which might not be as open as releasing the code or the trained network, but it did mean that the algorithm was implemented in a more open manner in the Leela Chess Zero project, which is now pretty competitive with Stockfish and playing interesting games against it in the TCEC.
(https://www.youtube.com/watch?v=UPkcAS2B60s)

This is the generalized Alpha Zero algorithm -- can be applied to a variety of games. So if they follow that pattern, maybe with Starcraft they'll shelve their code but release the research, which means it can be replicated. Guess we'll see! Keen to see what they've come up with. You'd think it must be a big leap. Bear in mind that once they had the right algorithm, they could train AlphaZero in a matter of hours and get it to a point where it's the best in the world by a mile. They have an incredible ability to test and implement learning algorithms quickly. Part of what gives them such an edge is their TPU hardware. So once there's been a breakthrough it could go from "how do we do this?" to "HOLY SHIT!" in a very short timeframe.



until alpha zero beats stockfish in TCEC finals, i will never call alpha zero the strongest engine. everything is controlled by google. no table base, no opening books - which sf isnt trained for.
and still, it isn't live games vs sf11dev.

and who knows if they released all games or are just cherry picking?


Well, I mean, it's always possible that they're presenting some kind of falsehood about the 100 game match vs Stockfish recently where Alpha Zero took no losses, but... why? Why would they flatly lie about the results of that match? Honestly I don't think they even care much about proving themselves in the domain of chess -- it was just part of a proof of concept about generalizing the AlphaGo algorithm to be applicable to other games. What do they gain by lying about this? Like, if you want to say that there should be a public tournament with different conditions before it's definitive, I can respect that, but the cherry picking idea seems pretty far-fetched to me, particularly considering the growth of Leela this year.


On January 23 2019 17:40 Grumbels wrote:
AlphaZero becoming the strongest engine in a matter of hours is a bit deceiving, given that it still required fifty million games of practice and computing a new version of the network every 25k games. It was estimated to take months for the Leela project (open source imitation of AZ), which is distributed on hundreds of computers. Google just has really powerful hardware.

There are some interesting quirks with Leela. For instance, it's not capable of playing endgames efficiently, it seemingly aimlessly moves around, making moves that don't lose the advantage. It doesn't "get to the point". If an SC2 AI is built on the same concept, expect it to not be able to finish off games quickly and take an hour to mine out the entire map and build a fleet of random units to randomly move around the map.
Another quirk of the project is that the algorithm uses not just the current move as input, but also the history of moves. This gives it some measure of what part of the board to pay "attention" to. It also means that if you give it a random position as input, without history, that it can't function. As far as I know Leela is useless in solving tactical puzzles and in handicap games without training it first.
Leela also typically doesn't understand theory of endgames. It doesn't just play them weirdly, but it also doesn't grasp some almost mathematical ideas such as identifying a class of endgames that are drawn despite material imbalances (opposite color bishops, wrong color bishop).
It's apparently also not better at fortress positions, where you have material disadvantages, but your position can't be cracked. There are some known positions like these, and it was hoped that neural networks would be better at them, and would be capable of reasoning that these are a special class of positions that require a different approach. But it doesn't really seem like it.

Leela is also probably already better than Stockfish if you have bad hardware and no opening book. You can imagine that if there was a market for SC2 bots, that they could have opening books updated for every patch and which would have a team of people dedicated to keeping track of the meta and adding knowledge of it to the bot. But Deepmind's AI would use self-learning, i.e. only playing itself and developing its own meta. I don't know if that would make it easier or harder to beat as a human. I think the tree-search method for chess is bound to scale better with hardware than a neural network approach, given that chess is theoretically solvable with tree search. But this method would be useless for SC2, unless the AI uses some sort of abstraction of strategy and tries to think ahead. But I don't think you really need to think ahead in SC2 to get decent results. If you just react to your opponent and have perfect, bot-like control, you will win.


Yeah, there are some quirks about Leela's play like the ones you mentioned. It's kinda hilarious watching Leela take forever to mate with Queen and King vs King, for example. But in most contexts, when both engines agree that the game is completely decided, they call it. Maybe Fantasy would make a new AI play for 2+ hours under totally lost conditions, but hopefully there would be a gg called before then in most cases.

The talk of openings and the translation to SC2 is interesting to think about. AlphaZero seemed to keep going back to a relatively small handful of openings (I seem to remember it kept using the Berlin defense?) when left to its own devices as opposed to starting from a book position. But SC2 openings seem like they have to account for a lot more variables. Would a deep RL algorithm for SC2 play differently when optimizing for series vs single maps? Would it develop opening strategies that are more or less water-tight no matter what the context? Also, Would it show some of AlphaZero/Leela's brilliance for understanding positional compensation and imbalanced material? I guess we might find out about all this stuff soon.
Maru | Life | PartinG || I guess I like aggressive control freaks... || Reynor will one day reign supreme || *reyn supreme
mishimaBeef
Profile Blog Joined January 2010
Canada2259 Posts
January 23 2019 16:23 GMT
#54
oh snap!
Dare to live the life you have dreamed for yourself. Go forward and make your dreams come true. - Ralph Waldo Emerson
ZigguratOfUr
Profile Blog Joined April 2012
Iraq16955 Posts
January 23 2019 16:24 GMT
#55
On January 23 2019 17:17 Lazzarus wrote:
So this is another AI playing SCII?

https://twitter.com/ENCE_Serral/status/1087742590357774336


Yes, but those are 'regular' AIs coded up by someone (and with 100k APM for crazy micro tricks).
Ronski
Profile Joined February 2011
Finland266 Posts
January 23 2019 16:26 GMT
#56
On January 24 2019 00:57 neutralrobot wrote:
Show nested quote +
On January 23 2019 11:53 KalWarkov wrote:
On January 23 2019 11:16 neutralrobot wrote:
On January 23 2019 10:53 ZigguratOfUr wrote:
On January 23 2019 06:17 Ronski wrote:
On January 23 2019 05:14 ZigguratOfUr wrote:
I hope the deepmind team is more open about what they produce. Show-matches are all very well, but giving players the opportunity to out-mindgame the AI afterwards would be interesting. AlphaZero was somewhat disappointing in the sense that no one really has a good sense of exactly how good it is at Shogi or Chess.


Didn't they make it pretty clear that its the best chess engine there is atm? Beating the strongest engine at chess means that no human player could ever hope to beat it so at least when it comes to chess I would say its clear that AlphaZero is the best there is.


I mean probably? But even when their paper was eventually released, it's still just a bunch of games against an old version of Stockfish in circumstances completely controlled, set up, and chosen to be favourable by the Deepmind team. The newest version of Stockfish can also beat the older version of Stockfish by about the same margin.

But arguing who is the best and stuff like that isn't too meaningful in the first place (it isn't of any importance if AlphaZero is the best or the second best)--the important thing is the machine learning research. And with Deepmind controlling everything about their research there's no room for other people to investigate things like whether AlphaZero with the current training would also be able to play Chess960 or adapt to starting with a piece handicap and so on and so forth.

It would be very disappointing if AlphaStarcraft came out and crushed Serral, Maru and Stats in showmatches and got shelved never to see the light again, leaving people to wonder about how AlphaStarcraft would react to (for example) playing on an island map, or how it would defend a cannon rush.


Well, actually... They recently played more games vs Stockfish in better conditions and AlphaZero comprehensively destroyed Stockfish. Also, they released the algorithm, which might not be as open as releasing the code or the trained network, but it did mean that the algorithm was implemented in a more open manner in the Leela Chess Zero project, which is now pretty competitive with Stockfish and playing interesting games against it in the TCEC.
(https://www.youtube.com/watch?v=UPkcAS2B60s)

This is the generalized Alpha Zero algorithm -- can be applied to a variety of games. So if they follow that pattern, maybe with Starcraft they'll shelve their code but release the research, which means it can be replicated. Guess we'll see! Keen to see what they've come up with. You'd think it must be a big leap. Bear in mind that once they had the right algorithm, they could train AlphaZero in a matter of hours and get it to a point where it's the best in the world by a mile. They have an incredible ability to test and implement learning algorithms quickly. Part of what gives them such an edge is their TPU hardware. So once there's been a breakthrough it could go from "how do we do this?" to "HOLY SHIT!" in a very short timeframe.



until alpha zero beats stockfish in TCEC finals, i will never call alpha zero the strongest engine. everything is controlled by google. no table base, no opening books - which sf isnt trained for.
and still, it isn't live games vs sf11dev.

and who knows if they released all games or are just cherry picking?


Well, I mean, it's always possible that they're presenting some kind of falsehood about the 100 game match vs Stockfish recently where Alpha Zero took no losses, but... why? Why would they flatly lie about the results of that match? Honestly I don't think they even care much about proving themselves in the domain of chess -- it was just part of a proof of concept about generalizing the AlphaGo algorithm to be applicable to other games. What do they gain by lying about this? Like, if you want to say that there should be a public tournament with different conditions before it's definitive, I can respect that, but the cherry picking idea seems pretty far-fetched to me, particularly considering the growth of Leela this year.


Show nested quote +
On January 23 2019 17:40 Grumbels wrote:
AlphaZero becoming the strongest engine in a matter of hours is a bit deceiving, given that it still required fifty million games of practice and computing a new version of the network every 25k games. It was estimated to take months for the Leela project (open source imitation of AZ), which is distributed on hundreds of computers. Google just has really powerful hardware.

There are some interesting quirks with Leela. For instance, it's not capable of playing endgames efficiently, it seemingly aimlessly moves around, making moves that don't lose the advantage. It doesn't "get to the point". If an SC2 AI is built on the same concept, expect it to not be able to finish off games quickly and take an hour to mine out the entire map and build a fleet of random units to randomly move around the map.
Another quirk of the project is that the algorithm uses not just the current move as input, but also the history of moves. This gives it some measure of what part of the board to pay "attention" to. It also means that if you give it a random position as input, without history, that it can't function. As far as I know Leela is useless in solving tactical puzzles and in handicap games without training it first.
Leela also typically doesn't understand theory of endgames. It doesn't just play them weirdly, but it also doesn't grasp some almost mathematical ideas such as identifying a class of endgames that are drawn despite material imbalances (opposite color bishops, wrong color bishop).
It's apparently also not better at fortress positions, where you have material disadvantages, but your position can't be cracked. There are some known positions like these, and it was hoped that neural networks would be better at them, and would be capable of reasoning that these are a special class of positions that require a different approach. But it doesn't really seem like it.

Leela is also probably already better than Stockfish if you have bad hardware and no opening book. You can imagine that if there was a market for SC2 bots, that they could have opening books updated for every patch and which would have a team of people dedicated to keeping track of the meta and adding knowledge of it to the bot. But Deepmind's AI would use self-learning, i.e. only playing itself and developing its own meta. I don't know if that would make it easier or harder to beat as a human. I think the tree-search method for chess is bound to scale better with hardware than a neural network approach, given that chess is theoretically solvable with tree search. But this method would be useless for SC2, unless the AI uses some sort of abstraction of strategy and tries to think ahead. But I don't think you really need to think ahead in SC2 to get decent results. If you just react to your opponent and have perfect, bot-like control, you will win.


Yeah, there are some quirks about Leela's play like the ones you mentioned. It's kinda hilarious watching Leela take forever to mate with Queen and King vs King, for example. But in most contexts, when both engines agree that the game is completely decided, they call it. Maybe Fantasy would make a new AI play for 2+ hours under totally lost conditions, but hopefully there would be a gg called before then in most cases.

The talk of openings and the translation to SC2 is interesting to think about. AlphaZero seemed to keep going back to a relatively small handful of openings (I seem to remember it kept using the Berlin defense?) when left to its own devices as opposed to starting from a book position. But SC2 openings seem like they have to account for a lot more variables. Would a deep RL algorithm for SC2 play differently when optimizing for series vs single maps? Would it develop opening strategies that are more or less water-tight no matter what the context? Also, Would it show some of AlphaZero/Leela's brilliance for understanding positional compensation and imbalanced material? I guess we might find out about all this stuff soon.


The latest match where Stockfish and AlphaZero played 1000 games Stockfish was using its opening books and did manage to win a decent amount of games with white pieces. Alphazero still won the match overall but Stockfish did take games on a somewhat consistent rate.
I am a tank. I am covered head to toe in solid plate mail. I carry a block of metal the size of a 4 door sedan to hide behind. If you see me running - you should too.
waiting2Bbanned
Profile Joined November 2015
United States154 Posts
Last Edited: 2019-01-23 16:46:33
January 23 2019 16:44 GMT
#57
On January 24 2019 00:31 gpanda.sc2 wrote:
Show nested quote +
On January 23 2019 12:50 imCHIEN wrote:
vs $O$ to see how AI deals with cheese
vs Maru to see how AI deals with his creative
vs Serral to see how AI deals with a strong late game opponent.


vs TY to see all the above at one time.


TY's cheese is repetitive and boring.

sOs' is not bad, but neither can hold a candle to Has' dairy farm.
"If you are going to break the law, do it with two thousand people.. and Mozart." - Howard Zinn
Zreg
Profile Joined October 2018
9 Posts
January 23 2019 17:10 GMT
#58
ive been thinking about this, a human cant really expect to win surely? if you think about sc2, theres too many things which contribute to human error, the best make least of these mistakes. The computer wont. Ever! IF you imagine the exact same build human vs comp, every missed second just snowballs for the human . . .the computer wuld experience none of this, with almost unlimited inputs.

I wouldnt want to play against it!

Rodya
Profile Joined January 2018
546 Posts
January 23 2019 17:18 GMT
#59
Is there something about neural nets that make this interesting? I mean wont we just see insane tank dropship abuse?
Banned for saying "zerg players are by far the biggest whiners in sc2 history" despite the fact that this forum is full of such posts about Terrans. Foreigner Elitists in control!
Cyro
Profile Blog Joined June 2011
United Kingdom20285 Posts
January 23 2019 17:30 GMT
#60
On January 24 2019 02:18 Rodya wrote:
Is there something about neural nets that make this interesting? I mean wont we just see insane tank dropship abuse?


Even with deep learning computers are really bad at some stuff and really good at other stuff, it would be amazing to see one able to take on a pro in a variety of situations
"oh my god my overclock... I got a single WHEA error on the 23rd hour, 9 minutes" -Belial88
Prev 1 2 3 4 5 28 29 30 Next All
Please log in or register to reply.
Live Events Refresh
Wardi Open
11:00
#44
WardiTV652
OGKoka 610
CranKy Ducklings119
Rex114
Liquipedia
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
OGKoka 610
Harstem 259
Creator 140
Rex 114
StarCraft: Brood War
BeSt 9176
Sea 2662
Mini 1984
Zeus 1863
Rush 958
Larva 475
Stork 448
PianO 363
firebathero 312
Pusan 224
[ Show more ]
Leta 131
Mind 90
ToSsGirL 79
Shine 49
Shinee 47
sSak 40
Movie 29
JulyZerg 29
Barracks 28
sorry 24
Icarus 14
SilentControl 13
Bale 9
Dota 2
qojqva1979
XcaliburYe563
Counter-Strike
shoxiejesuss1442
x6flipin686
flusha355
allub244
Super Smash Bros
Mew2King137
Heroes of the Storm
Khaldor172
Other Games
singsing1750
B2W.Neo1024
crisheroes390
Fuzer 320
mouzStarbuck243
Pyrionflax229
SortOf199
Lowko154
Happy121
ArmadaUGS23
Organizations
Other Games
gamesdonequick4870
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 11 non-featured ]
StarCraft 2
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• lizZardDota2296
Upcoming Events
RotterdaM Event
4h 8m
Replay Cast
22h 8m
WardiTV European League
1d 4h
ShoWTimE vs sebesdes
Percival vs NightPhoenix
Shameless vs Nicoract
Krystianer vs Scarlett
ByuN vs uThermal
Harstem vs HeRoMaRinE
PiGosaur Monday
1d 12h
uThermal 2v2 Circuit
2 days
Replay Cast
2 days
The PondCast
2 days
Replay Cast
3 days
Epic.LAN
4 days
CranKy Ducklings
4 days
[ Show More ]
Epic.LAN
5 days
BSL20 Non-Korean Champi…
5 days
Bonyth vs Sziky
Dewalt vs Hawk
Hawk vs QiaoGege
Sziky vs Dewalt
Mihu vs Bonyth
Zhanhun vs QiaoGege
QiaoGege vs Fengzi
Sparkling Tuna Cup
5 days
Online Event
6 days
BSL20 Non-Korean Champi…
6 days
Bonyth vs Zhanhun
Dewalt vs Mihu
Hawk vs Sziky
Sziky vs QiaoGege
Mihu vs Hawk
Zhanhun vs Dewalt
Fengzi vs Bonyth
Liquipedia Results

Completed

2025 ACS Season 2: Qualifier
RSL Revival: Season 1
Murky Cup #2

Ongoing

JPL Season 2
BSL 2v2 Season 3
Copa Latinoamericana 4
Jiahua Invitational
BSL20 Non-Korean Championship
Championship of Russia 2025
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025
PGL Astana 2025
Asian Champions League '25
BLAST Rivals Spring 2025
MESA Nomadic Masters

Upcoming

CSL Xiamen Invitational
CSL Xiamen Invitational: ShowMatche
2025 ACS Season 2
CSLPRO Last Chance 2025
CSLPRO Chat StarLAN 3
BSL Season 21
K-Championship
RSL Revival: Season 2
SEL Season 2 Championship
uThermal 2v2 Main Event
FEL Cracov 2025
Esports World Cup 2025
Underdog Cup #2
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.