• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EST 04:30
CET 10:30
KST 18:30
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
RSL Revival - 2025 Season Finals Preview8RSL Season 3 - Playoffs Preview0RSL Season 3 - RO16 Groups C & D Preview0RSL Season 3 - RO16 Groups A & B Preview2TL.net Map Contest #21: Winners12
Community News
$21,000 RyongYi Cup Season 3 announced (Jan 22-Feb 7)1Weekly Cups (Dec 29-Jan 4): Protoss rolls, 2v2 returns6[BSL21] Non-Korean Championship - Starts Jan 103SC2 All-Star Invitational: Jan 17-1822Weekly Cups (Dec 22-28): Classic & MaxPax win, Percival surprises3
StarCraft 2
General
Weekly Cups (Dec 29-Jan 4): Protoss rolls, 2v2 returns SC2 All-Star Invitational: Jan 17-18 Weekly Cups (Dec 22-28): Classic & MaxPax win, Percival surprises Chinese SC2 server to reopen; live all-star event in Hangzhou Starcraft 2 Zerg Coach
Tourneys
$21,000 RyongYi Cup Season 3 announced (Jan 22-Feb 7) WardiTV Winter Cup WardiTV Mondays SC2 AI Tournament 2026 OSC Season 13 World Championship
Strategy
Simple Questions Simple Answers
Custom Maps
Map Editor closed ?
External Content
Mutation # 507 Well Trained Mutation # 506 Warp Zone Mutation # 505 Rise From Ashes Mutation # 504 Retribution
Brood War
General
I would like to say something about StarCraft BGH Auto Balance -> http://bghmmr.eu/ BW General Discussion StarCraft & BroodWar Campaign Speedrun Quest Data analysis on 70 million replays
Tourneys
[Megathread] Daily Proleagues [BSL21] Grand Finals - Sunday 21:00 CET [BSL21] Non-Korean Championship - Starts Jan 10 SLON Grand Finals – Season 2
Strategy
Game Theory for Starcraft Simple Questions, Simple Answers Current Meta [G] How to get started on ladder as a new Z player
Other Games
General Games
Awesome Games Done Quick 2026! Stormgate/Frost Giant Megathread General RTS Discussion Thread Nintendo Switch Thread Should offensive tower rushing be viable in RTS games?
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
Vanilla Mini Mafia Mafia Game Mode Feedback/Ideas
Community
General
US Politics Mega-thread Things Aren’t Peaceful in Palestine Russo-Ukrainian War Thread Trading/Investing Thread The Big Programming Thread
Fan Clubs
White-Ra Fan Club
Media & Entertainment
Anime Discussion Thread
Sports
2024 - 2026 Football Thread Formula 1 Discussion
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
The Automated Ban List TL+ Announced
Blogs
Life Update and thoughts.
FuDDx
How do archons sleep?
8882
Psychological Factors That D…
TrAiDoS
James Bond movies ranking - pa…
Topin
StarCraft improvement
iopq
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1243 users

Anyone took putnam math contest today?

Blogs > evanthebouncy!
Post a Reply
1 2 Next All
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
Last Edited: 2009-12-06 19:12:43
December 06 2009 12:49 GMT
#1
I took a swing at it and I did 2 problems lol. One for the morning and one for the afternoon. It's really cool and hard.
That was some epic 6 hour battle hahaha!!

Anyways the last problem is pretty hard, I couldn't do it so if anyone want to have a go at it! please!

We have a sequence:
a0, a1, ..., a2009

a0 = 0, always
ai for i>=1 has to be either one of these:
ai = 2^k + aj for any non-negative integer k, and for any aj such that j<i
or
ai = aj mod ak, for j, k < i (doesn't matter if j<k or k<j)
a2009 = n, always. n is ANY positive integer.

so to rephrase the problem, in case it's not clear or it might help you understand it better:
if we start with 0 on a0, how can we make any positive integer n in 2009 steps, filling a0, then a1, a2, ... finally ending with n at a2009 where each time we try to fill some ai we must obey one out of these 2 rules:
1) ai is a sum of 2^k and aj for some aj occuring before ai
or
2) ai is a mod of ak and aj, where ak and aj occurs before ai (does not matter if ak occurs before or after aj)

How to do it?! I get this feeling we'll eventually run out of usable bits as 2^k can only add some 1 bit of information per iteration, I just dunno haha. This procedure must be made in constant and not linear time since 2009 is just some fancy cap. I feel that you should hit your target goal n say, at the 10th step then just repeat n over and over as n mod some large number.

Anyways take a swing at it!!

edit:
by mod I meant the element in the modulo class, i.e. b mod c is an element of {0, 1, ..., c-1}

Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
motbob
Profile Blog Joined July 2008
United States12546 Posts
Last Edited: 2009-12-06 12:58:31
December 06 2009 12:56 GMT
#2
I was going to. I was writing OSL articles and forgot to go Starcraft has become my nerd activity of choice.

BTW I took Putnam freshman year and it's one of the most brutally difficult math tests I've ever seen... I'm not really surprised that the median score is zero. That problem you posted looks particularly brutal.
ModeratorGood content always wins.
Marradron
Profile Blog Joined January 2009
Netherlands1586 Posts
Last Edited: 2009-12-06 13:43:05
December 06 2009 13:41 GMT
#3
cant you just say
a0 = 0
a1 = 2^0 + a0 = 1
a2 = 2^1 + a0 = 2
a3 = 2^1 + a1= 3
a4 = 2^2 + a0 = 4
a5 = 2^2 + a1 = 5
Like that you can make any number you want once you reach your number you can just ceep repeating the samething. in example if n were 5 you would ceep saying
an = 2^2 + a1
Marradron
Profile Blog Joined January 2009
Netherlands1586 Posts
Last Edited: 2009-12-06 13:42:40
December 06 2009 13:42 GMT
#4
sorry, doublepost
ProbeSaturation
Profile Blog Joined March 2009
Canada292 Posts
December 06 2009 13:50 GMT
#5
^ smart people at work
Ludrik
Profile Blog Joined June 2008
Australia523 Posts
December 06 2009 13:56 GMT
#6
I've been looking around for interesting maths based problem solving sites and figured you guys might have some suggestions. Currently I'm slowly working through projecteuler.net
Only a fool would die laughing. I was a fool.
Nytefish
Profile Blog Joined December 2007
United Kingdom4282 Posts
December 06 2009 13:57 GMT
#7
On December 06 2009 22:41 Marradron wrote:
cant you just say
a0 = 0
a1 = 2^0 + a0 = 1
a2 = 2^1 + a0 = 2
a3 = 2^1 + a1= 3
a4 = 2^2 + a0 = 4
a5 = 2^2 + a1 = 5
Like that you can make any number you want once you reach your number you can just ceep repeating the samething. in example if n were 5 you would ceep saying
an = 2^2 + a1


Surely that process only works for n<=2009
No I'm never serious.
searcher
Profile Blog Joined May 2009
277 Posts
Last Edited: 2009-12-06 15:53:44
December 06 2009 14:14 GMT
#8
Umm, either I haven't read your question correctly or you haven't got the right one, but how about:
a0 = 0
a1 = 2^0+a0 = 1
a2 = 2^1 + a0 = 2
a3 = a4 = ... = a2008 = 2^1+a0 = 2 (you could make these any number you want really)
If n is odd, then n = 1 mod 2 = a1 mod a2, so a2009 can be n.
If n is even, then n = 0 mod 2 = a0 mod a2, so a2009 can be n.

Edit: I think there was a misunderstanding: when the OP says ai = aj mod ak, he doesn't mean ai is congruent to aj mod ak, but that ai = aj % ak, or in other words that ai is the remainder when aj is divided by ak.
starfries
Profile Blog Joined July 2009
Canada3508 Posts
December 06 2009 14:48 GMT
#9
I did 4 problems but I didn't really try this one.. it sounded way too hard lol. What exactly are you trying to figure out? which values of n are possible? or whether given an n if it's possible to do it.
DJ – do you like ramen, Savior? Savior – not really. Bisu – I eat it often. Flash – I’m a maniac! | Foxer Fighting!
Hamster1800
Profile Blog Joined August 2008
United States175 Posts
December 06 2009 15:29 GMT
#10
Okay...I think I've got it.

First let's notice that 2 is a generator modulo 3^r for all r. That is, the set of residues of 2^k mod 3^r over all k are all of the residues relatively prime to 3^r. This can be shown because 2 is a generator mod 9, and then the standard primitive root lifting argument shows it for all r > 2.

Therefore, we know that if 3^r >> n, we can write n as the remainder of 2^k * 3^l mod 3^r for some k and l (let 2^k = n mod 3^r and l be the number of 3s dividing n). All we then need to show are that we can construct 2^k * 3^l and 3^r in a constant number of steps.

We have a_0 = 0. Let a_1 = 2^m for m >> r, k, and l, a_2 = 2^m + 1, and a_3 = 2^m + 3. Now we let a_4 = 2^(m*l + k) and a_5 = 2^(m*r). a_6 = a_4 % a_3 = 2^k * 3^l, and a_7 = a_5 % a_3 = 3^r. Finally a_8 = a_6 % a_7 = (2^k * 3^l) % (3^r) = n.

It's easy to then get a_2009 to be equal to n.
D is for Diamond, E is for Everything Else
Commodore
Profile Joined January 2008
United States97 Posts
December 06 2009 15:40 GMT
#11
On December 06 2009 22:56 Ludrik wrote:
I've been looking around for interesting maths based problem solving sites and figured you guys might have some suggestions. Currently I'm slowly working through projecteuler.net


Old Putnam problems are available http://www.unl.edu/amc/a-activities/a7-problems/putnamindex.shtml

I went through some of these while preparing for the Putnam exam. Some of these can be done without anything more than freshman calculus, but many require undergraduate real analysis or abstract algebra.
searcher
Profile Blog Joined May 2009
277 Posts
Last Edited: 2009-12-06 17:13:50
December 06 2009 16:14 GMT
#12
Edit: misunderstanding
Hamster1800
Profile Blog Joined August 2008
United States175 Posts
December 06 2009 16:44 GMT
#13
I did not take the test, I am just using what I think the OP means.
D is for Diamond, E is for Everything Else
searcher
Profile Blog Joined May 2009
277 Posts
December 06 2009 17:02 GMT
#14
On December 07 2009 01:44 Hamster1800 wrote:
I did not take the test, I am just using what I think the OP means.

Sorry mixed you up with someone else in the thread. Could you elucidate to me how you got a7? 2^(m*r) % 2^m +3 doesn't seem to equal 3^r for many values of m and r (I made sure m >> r too), though it's true for some of them.
Klockan3
Profile Blog Joined July 2007
Sweden2866 Posts
Last Edited: 2009-12-06 17:12:12
December 06 2009 17:10 GMT
#15
On December 07 2009 01:14 searcher wrote:
a series a0...a2008 such that a2009 can be any n

Such a series is impossible to construct, so it is obvious that this wasn't the question. You can't construct larger numbers with the mod operation and you certainly can't create every n in N using just 2^k+c with a finite choice of c and for any k.
Hamster1800
Profile Blog Joined August 2008
United States175 Posts
Last Edited: 2009-12-06 17:14:03
December 06 2009 17:11 GMT
#16
On December 07 2009 02:02 searcher wrote:
Show nested quote +
On December 07 2009 01:44 Hamster1800 wrote:
I did not take the test, I am just using what I think the OP means.

Sorry mixed you up with someone else in the thread. Could you elucidate to me how you got a7? 2^(m*r) % 2^m +3 doesn't seem to equal 3^r for many values of m and r (I made sure m >> r too), though it's true for some of them.


Oh you are right, it is (-3)^r (+2^m if need be)....Just take r to be even. Unfortunately, there's still a problem in a_6. I'll look into it later when I have more time, but someone else can probably fix it before then.
D is for Diamond, E is for Everything Else
searcher
Profile Blog Joined May 2009
277 Posts
December 06 2009 17:13 GMT
#17
On December 07 2009 02:10 Klockan3 wrote:
Show nested quote +
On December 07 2009 01:14 searcher wrote:
a series a0...a2008 such that a2009 can be any n

Such a series is impossible to construct, so it is obvious that this wasn't the question.

Not if you used my original interpretation of what the OP meant by "ai = aj mod ak", which I took to be "ai is congruent to aj modulo ak". Since I have realized that my interpretation is most likely wrong (otherwise my trivial solution above would be correct) I should probably remove that comment.
Klockan3
Profile Blog Joined July 2007
Sweden2866 Posts
December 06 2009 17:19 GMT
#18
On December 07 2009 02:11 Hamster1800 wrote:
Show nested quote +
On December 07 2009 02:02 searcher wrote:
On December 07 2009 01:44 Hamster1800 wrote:
I did not take the test, I am just using what I think the OP means.

Sorry mixed you up with someone else in the thread. Could you elucidate to me how you got a7? 2^(m*r) % 2^m +3 doesn't seem to equal 3^r for many values of m and r (I made sure m >> r too), though it's true for some of them.


Oh you are right, it is (-3)^r (+2^m if need be)....Just take r to be even. Unfortunately, there's still a problem in a_6. I'll look into it later when I have more time, but someone else can probably fix it before then.

Do you use the % for a modulus operation? Like 23%9=5?

Then at least I would get 2^(m*r)%2^m+3 =(2^m)+3*(1-2^r) if m>>r.
Hamster1800
Profile Blog Joined August 2008
United States175 Posts
December 06 2009 17:43 GMT
#19
On December 07 2009 02:19 Klockan3 wrote:
Show nested quote +
On December 07 2009 02:11 Hamster1800 wrote:
On December 07 2009 02:02 searcher wrote:
On December 07 2009 01:44 Hamster1800 wrote:
I did not take the test, I am just using what I think the OP means.

Sorry mixed you up with someone else in the thread. Could you elucidate to me how you got a7? 2^(m*r) % 2^m +3 doesn't seem to equal 3^r for many values of m and r (I made sure m >> r too), though it's true for some of them.


Oh you are right, it is (-3)^r (+2^m if need be)....Just take r to be even. Unfortunately, there's still a problem in a_6. I'll look into it later when I have more time, but someone else can probably fix it before then.

Do you use the % for a modulus operation? Like 23%9=5?

Then at least I would get 2^(m*r)%2^m+3 =(2^m)+3*(1-2^r) if m>>r.


2^(m*r) = (2^m)^r = (-3)^r mod (2^m+3). What you have is 2^(m+r).

To fix the other part, we were looking at 2^(m*l+k). If l is even, we're fine since (-3)^l = 3^l. If l is odd, we'll break it into two steps: 2^(m*(l-1) + k) and then 2^(m*(l-1) + k + 1) + 2^(m*(l-1) + k) = 3*2^(m*(l-1)+k), which will be congruent to 3*((-3)^(l-1)*2^k) = 3^l * 2^k.
D is for Diamond, E is for Everything Else
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
December 06 2009 19:08 GMT
#20
On December 06 2009 23:14 searcher wrote:
Umm, either I haven't read your question correctly or you haven't got the right one, but how about:
a0 = 0
a1 = 2^0+a0 = 1
a2 = 2^1 + a0 = 2
a3 = a4 = ... = a2008 = 2^1+a0 = 2 (you could make these any number you want really)
If n is odd, then n = 1 mod 2 = a1 mod a2, so a2009 can be n.
If n is even, then n = 0 mod 2 = a0 mod a2, so a2009 can be n.

Edit: I think there was a misunderstanding: when the OP says ai = aj mod ak, he doesn't mean ai is congruent to aj mod ak, but that ai = aj % ak, or in other words that ai is the remainder when aj is divided by ak.


the latter is what I meant.
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
1 2 Next All
Please log in or register to reply.
Live Events Refresh
Next event in 18h 30m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
WinterStarcraft502
SortOf 145
StarCraft: Brood War
Britney 26863
GuemChi 4587
Hyuk 1246
Shuttle 880
Pusan 297
Mini 281
Killer 247
Movie 146
Light 118
EffOrt 108
[ Show more ]
Hyun 101
Mong 99
Sharp 89
Dewaltoss 87
soO 61
Soma 61
Barracks 53
NotJumperer 38
Rush 31
NaDa 23
Mind 19
JulyZerg 18
Noble 17
ZergMaN 15
Sacsri 11
Bale 9
ZerO 4
Dota 2
NeuroSwarm85
XcaliburYe1
League of Legends
JimRising 741
C9.Mang0471
Other Games
ceh9514
Happy459
crisheroes312
Fuzer 280
XaKoH 219
ZerO(Twitch)0
Organizations
Other Games
gamesdonequick29273
StarCraft: Brood War
UltimateBattle 76
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 15 non-featured ]
StarCraft 2
• intothetv
• AfreecaTV YouTube
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• iopq 1
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
League of Legends
• Doublelift4791
• Scarra2550
• Lourlo994
• Jankos909
Upcoming Events
SOOP
18h 30m
SHIN vs GuMiho
Cure vs Creator
The PondCast
1d
Wardi Open
1d 2h
Big Gabe XPERIONCRAFT
1d 3h
AI Arena Tournament
1d 10h
Sparkling Tuna Cup
2 days
WardiTV Invitational
2 days
IPSL
2 days
DragOn vs Sziky
Replay Cast
2 days
Wardi Open
3 days
[ Show More ]
Monday Night Weeklies
3 days
WardiTV Invitational
4 days
WardiTV Invitational
5 days
The PondCast
6 days
Liquipedia Results

Completed

Proleague 2026-01-07
WardiTV 2025
META Madness #9

Ongoing

C-Race Season 1
IPSL Winter 2025-26
Escore Tournament S1: W3
OSC Championship Season 13
eXTREMESLAND 2025
SL Budapest Major 2025
ESL Impact League Season 8
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025

Upcoming

BSL 21 Non-Korean Championship
CSL 2025 WINTER (S19)
Acropolis #4
IPSL Spring 2026
Bellum Gens Elite Stara Zagora 2026
HSC XXVIII
Rongyi Cup S3
Thunderfire SC2 All-star 2025
Big Gabe Cup #3
Nations Cup 2026
Underdog Cup #3
NA Kuram Kup
BLAST Open Spring 2026
ESL Pro League Season 23
ESL Pro League Season 23
PGL Cluj-Napoca 2026
IEM Kraków 2026
BLAST Bounty Winter 2026
BLAST Bounty Winter Qual
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2026 TLnet. All Rights Reserved.