• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 20:01
CEST 02:01
KST 09:01
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
Team TLMC #5 - Finalists & Open Tournaments0[ASL20] Ro16 Preview Pt2: Turbulence10Classic Games #3: Rogue vs Serral at BlizzCon9[ASL20] Ro16 Preview Pt1: Ascent10Maestros of the Game: Week 1/Play-in Preview12
Community News
StarCraft II 5.0.15 PTR Patch Notes49BSL 2025 Warsaw LAN + Legends Showmatch0Weekly Cups (Sept 8-14): herO & MaxPax split cups4WardiTV TL Team Map Contest #5 Tournaments1SC4ALL $6,000 Open LAN in Philadelphia8
StarCraft 2
General
StarCraft II 5.0.15 PTR Patch Notes #1: Maru - Greatest Players of All Time Weekly Cups (Sept 8-14): herO & MaxPax split cups Team Liquid Map Contest #21 - Presented by Monster Energy SpeCial on The Tasteless Podcast
Tourneys
SC2's Safe House 2 - October 18 & 19 RSL: Revival, a new crowdfunded tournament series Maestros of The Game—$20k event w/ live finals in Paris Sparkling Tuna Cup - Weekly Open Tournament SC4ALL $6,000 Open LAN in Philadelphia
Strategy
Custom Maps
External Content
Mutation # 491 Night Drive Mutation # 490 Masters of Midnight Mutation # 489 Bannable Offense Mutation # 488 What Goes Around
Brood War
General
ASL20 General Discussion Soulkey on ASL S20 BW General Discussion ASL TICKET LIVE help! :D NaDa's Body
Tourneys
[ASL20] Ro16 Group C [ASL20] Ro16 Group D Small VOD Thread 2.0 [Megathread] Daily Proleagues
Strategy
Simple Questions, Simple Answers Muta micro map competition Fighting Spirit mining rates [G] Mineral Boosting
Other Games
General Games
Stormgate/Frost Giant Megathread Borderlands 3 Path of Exile Nintendo Switch Thread General RTS Discussion Thread
Dota 2
Official 'what is Dota anymore' discussion LiquidDota to reintegrate into TL.net
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread
Community
General
US Politics Mega-thread Things Aren’t Peaceful in Palestine Russo-Ukrainian War Thread UK Politics Mega-thread Canadian Politics Mega-thread
Fan Clubs
The Happy Fan Club!
Media & Entertainment
Movie Discussion! [Manga] One Piece Anime Discussion Thread
Sports
2024 - 2026 Football Thread Formula 1 Discussion MLB/Baseball 2023
World Cup 2022
Tech Support
Linksys AE2500 USB WIFI keeps disconnecting Computer Build, Upgrade & Buying Resource Thread High temperatures on bridge(s)
TL Community
BarCraft in Tokyo Japan for ASL Season5 Final The Automated Ban List
Blogs
i'm really bored guys
Peanutsc
I <=> 9
KrillinFromwales
The Personality of a Spender…
TrAiDoS
A very expensive lesson on ma…
Garnet
hello world
radishsoup
Lemme tell you a thing o…
JoinTheRain
RTS Design in Hypercoven
a11
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1506 users

Anyone took putnam math contest today?

Blogs > evanthebouncy!
Post a Reply
1 2 Next All
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
Last Edited: 2009-12-06 19:12:43
December 06 2009 12:49 GMT
#1
I took a swing at it and I did 2 problems lol. One for the morning and one for the afternoon. It's really cool and hard.
That was some epic 6 hour battle hahaha!!

Anyways the last problem is pretty hard, I couldn't do it so if anyone want to have a go at it! please!

We have a sequence:
a0, a1, ..., a2009

a0 = 0, always
ai for i>=1 has to be either one of these:
ai = 2^k + aj for any non-negative integer k, and for any aj such that j<i
or
ai = aj mod ak, for j, k < i (doesn't matter if j<k or k<j)
a2009 = n, always. n is ANY positive integer.

so to rephrase the problem, in case it's not clear or it might help you understand it better:
if we start with 0 on a0, how can we make any positive integer n in 2009 steps, filling a0, then a1, a2, ... finally ending with n at a2009 where each time we try to fill some ai we must obey one out of these 2 rules:
1) ai is a sum of 2^k and aj for some aj occuring before ai
or
2) ai is a mod of ak and aj, where ak and aj occurs before ai (does not matter if ak occurs before or after aj)

How to do it?! I get this feeling we'll eventually run out of usable bits as 2^k can only add some 1 bit of information per iteration, I just dunno haha. This procedure must be made in constant and not linear time since 2009 is just some fancy cap. I feel that you should hit your target goal n say, at the 10th step then just repeat n over and over as n mod some large number.

Anyways take a swing at it!!

edit:
by mod I meant the element in the modulo class, i.e. b mod c is an element of {0, 1, ..., c-1}

Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
motbob
Profile Blog Joined July 2008
United States12546 Posts
Last Edited: 2009-12-06 12:58:31
December 06 2009 12:56 GMT
#2
I was going to. I was writing OSL articles and forgot to go Starcraft has become my nerd activity of choice.

BTW I took Putnam freshman year and it's one of the most brutally difficult math tests I've ever seen... I'm not really surprised that the median score is zero. That problem you posted looks particularly brutal.
ModeratorGood content always wins.
Marradron
Profile Blog Joined January 2009
Netherlands1586 Posts
Last Edited: 2009-12-06 13:43:05
December 06 2009 13:41 GMT
#3
cant you just say
a0 = 0
a1 = 2^0 + a0 = 1
a2 = 2^1 + a0 = 2
a3 = 2^1 + a1= 3
a4 = 2^2 + a0 = 4
a5 = 2^2 + a1 = 5
Like that you can make any number you want once you reach your number you can just ceep repeating the samething. in example if n were 5 you would ceep saying
an = 2^2 + a1
Marradron
Profile Blog Joined January 2009
Netherlands1586 Posts
Last Edited: 2009-12-06 13:42:40
December 06 2009 13:42 GMT
#4
sorry, doublepost
ProbeSaturation
Profile Blog Joined March 2009
Canada292 Posts
December 06 2009 13:50 GMT
#5
^ smart people at work
Ludrik
Profile Blog Joined June 2008
Australia523 Posts
December 06 2009 13:56 GMT
#6
I've been looking around for interesting maths based problem solving sites and figured you guys might have some suggestions. Currently I'm slowly working through projecteuler.net
Only a fool would die laughing. I was a fool.
Nytefish
Profile Blog Joined December 2007
United Kingdom4282 Posts
December 06 2009 13:57 GMT
#7
On December 06 2009 22:41 Marradron wrote:
cant you just say
a0 = 0
a1 = 2^0 + a0 = 1
a2 = 2^1 + a0 = 2
a3 = 2^1 + a1= 3
a4 = 2^2 + a0 = 4
a5 = 2^2 + a1 = 5
Like that you can make any number you want once you reach your number you can just ceep repeating the samething. in example if n were 5 you would ceep saying
an = 2^2 + a1


Surely that process only works for n<=2009
No I'm never serious.
searcher
Profile Blog Joined May 2009
277 Posts
Last Edited: 2009-12-06 15:53:44
December 06 2009 14:14 GMT
#8
Umm, either I haven't read your question correctly or you haven't got the right one, but how about:
a0 = 0
a1 = 2^0+a0 = 1
a2 = 2^1 + a0 = 2
a3 = a4 = ... = a2008 = 2^1+a0 = 2 (you could make these any number you want really)
If n is odd, then n = 1 mod 2 = a1 mod a2, so a2009 can be n.
If n is even, then n = 0 mod 2 = a0 mod a2, so a2009 can be n.

Edit: I think there was a misunderstanding: when the OP says ai = aj mod ak, he doesn't mean ai is congruent to aj mod ak, but that ai = aj % ak, or in other words that ai is the remainder when aj is divided by ak.
starfries
Profile Blog Joined July 2009
Canada3508 Posts
December 06 2009 14:48 GMT
#9
I did 4 problems but I didn't really try this one.. it sounded way too hard lol. What exactly are you trying to figure out? which values of n are possible? or whether given an n if it's possible to do it.
DJ – do you like ramen, Savior? Savior – not really. Bisu – I eat it often. Flash – I’m a maniac! | Foxer Fighting!
Hamster1800
Profile Blog Joined August 2008
United States175 Posts
December 06 2009 15:29 GMT
#10
Okay...I think I've got it.

First let's notice that 2 is a generator modulo 3^r for all r. That is, the set of residues of 2^k mod 3^r over all k are all of the residues relatively prime to 3^r. This can be shown because 2 is a generator mod 9, and then the standard primitive root lifting argument shows it for all r > 2.

Therefore, we know that if 3^r >> n, we can write n as the remainder of 2^k * 3^l mod 3^r for some k and l (let 2^k = n mod 3^r and l be the number of 3s dividing n). All we then need to show are that we can construct 2^k * 3^l and 3^r in a constant number of steps.

We have a_0 = 0. Let a_1 = 2^m for m >> r, k, and l, a_2 = 2^m + 1, and a_3 = 2^m + 3. Now we let a_4 = 2^(m*l + k) and a_5 = 2^(m*r). a_6 = a_4 % a_3 = 2^k * 3^l, and a_7 = a_5 % a_3 = 3^r. Finally a_8 = a_6 % a_7 = (2^k * 3^l) % (3^r) = n.

It's easy to then get a_2009 to be equal to n.
D is for Diamond, E is for Everything Else
Commodore
Profile Joined January 2008
United States97 Posts
December 06 2009 15:40 GMT
#11
On December 06 2009 22:56 Ludrik wrote:
I've been looking around for interesting maths based problem solving sites and figured you guys might have some suggestions. Currently I'm slowly working through projecteuler.net


Old Putnam problems are available http://www.unl.edu/amc/a-activities/a7-problems/putnamindex.shtml

I went through some of these while preparing for the Putnam exam. Some of these can be done without anything more than freshman calculus, but many require undergraduate real analysis or abstract algebra.
searcher
Profile Blog Joined May 2009
277 Posts
Last Edited: 2009-12-06 17:13:50
December 06 2009 16:14 GMT
#12
Edit: misunderstanding
Hamster1800
Profile Blog Joined August 2008
United States175 Posts
December 06 2009 16:44 GMT
#13
I did not take the test, I am just using what I think the OP means.
D is for Diamond, E is for Everything Else
searcher
Profile Blog Joined May 2009
277 Posts
December 06 2009 17:02 GMT
#14
On December 07 2009 01:44 Hamster1800 wrote:
I did not take the test, I am just using what I think the OP means.

Sorry mixed you up with someone else in the thread. Could you elucidate to me how you got a7? 2^(m*r) % 2^m +3 doesn't seem to equal 3^r for many values of m and r (I made sure m >> r too), though it's true for some of them.
Klockan3
Profile Blog Joined July 2007
Sweden2866 Posts
Last Edited: 2009-12-06 17:12:12
December 06 2009 17:10 GMT
#15
On December 07 2009 01:14 searcher wrote:
a series a0...a2008 such that a2009 can be any n

Such a series is impossible to construct, so it is obvious that this wasn't the question. You can't construct larger numbers with the mod operation and you certainly can't create every n in N using just 2^k+c with a finite choice of c and for any k.
Hamster1800
Profile Blog Joined August 2008
United States175 Posts
Last Edited: 2009-12-06 17:14:03
December 06 2009 17:11 GMT
#16
On December 07 2009 02:02 searcher wrote:
Show nested quote +
On December 07 2009 01:44 Hamster1800 wrote:
I did not take the test, I am just using what I think the OP means.

Sorry mixed you up with someone else in the thread. Could you elucidate to me how you got a7? 2^(m*r) % 2^m +3 doesn't seem to equal 3^r for many values of m and r (I made sure m >> r too), though it's true for some of them.


Oh you are right, it is (-3)^r (+2^m if need be)....Just take r to be even. Unfortunately, there's still a problem in a_6. I'll look into it later when I have more time, but someone else can probably fix it before then.
D is for Diamond, E is for Everything Else
searcher
Profile Blog Joined May 2009
277 Posts
December 06 2009 17:13 GMT
#17
On December 07 2009 02:10 Klockan3 wrote:
Show nested quote +
On December 07 2009 01:14 searcher wrote:
a series a0...a2008 such that a2009 can be any n

Such a series is impossible to construct, so it is obvious that this wasn't the question.

Not if you used my original interpretation of what the OP meant by "ai = aj mod ak", which I took to be "ai is congruent to aj modulo ak". Since I have realized that my interpretation is most likely wrong (otherwise my trivial solution above would be correct) I should probably remove that comment.
Klockan3
Profile Blog Joined July 2007
Sweden2866 Posts
December 06 2009 17:19 GMT
#18
On December 07 2009 02:11 Hamster1800 wrote:
Show nested quote +
On December 07 2009 02:02 searcher wrote:
On December 07 2009 01:44 Hamster1800 wrote:
I did not take the test, I am just using what I think the OP means.

Sorry mixed you up with someone else in the thread. Could you elucidate to me how you got a7? 2^(m*r) % 2^m +3 doesn't seem to equal 3^r for many values of m and r (I made sure m >> r too), though it's true for some of them.


Oh you are right, it is (-3)^r (+2^m if need be)....Just take r to be even. Unfortunately, there's still a problem in a_6. I'll look into it later when I have more time, but someone else can probably fix it before then.

Do you use the % for a modulus operation? Like 23%9=5?

Then at least I would get 2^(m*r)%2^m+3 =(2^m)+3*(1-2^r) if m>>r.
Hamster1800
Profile Blog Joined August 2008
United States175 Posts
December 06 2009 17:43 GMT
#19
On December 07 2009 02:19 Klockan3 wrote:
Show nested quote +
On December 07 2009 02:11 Hamster1800 wrote:
On December 07 2009 02:02 searcher wrote:
On December 07 2009 01:44 Hamster1800 wrote:
I did not take the test, I am just using what I think the OP means.

Sorry mixed you up with someone else in the thread. Could you elucidate to me how you got a7? 2^(m*r) % 2^m +3 doesn't seem to equal 3^r for many values of m and r (I made sure m >> r too), though it's true for some of them.


Oh you are right, it is (-3)^r (+2^m if need be)....Just take r to be even. Unfortunately, there's still a problem in a_6. I'll look into it later when I have more time, but someone else can probably fix it before then.

Do you use the % for a modulus operation? Like 23%9=5?

Then at least I would get 2^(m*r)%2^m+3 =(2^m)+3*(1-2^r) if m>>r.


2^(m*r) = (2^m)^r = (-3)^r mod (2^m+3). What you have is 2^(m+r).

To fix the other part, we were looking at 2^(m*l+k). If l is even, we're fine since (-3)^l = 3^l. If l is odd, we'll break it into two steps: 2^(m*(l-1) + k) and then 2^(m*(l-1) + k + 1) + 2^(m*(l-1) + k) = 3*2^(m*(l-1)+k), which will be congruent to 3*((-3)^(l-1)*2^k) = 3^l * 2^k.
D is for Diamond, E is for Everything Else
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
December 06 2009 19:08 GMT
#20
On December 06 2009 23:14 searcher wrote:
Umm, either I haven't read your question correctly or you haven't got the right one, but how about:
a0 = 0
a1 = 2^0+a0 = 1
a2 = 2^1 + a0 = 2
a3 = a4 = ... = a2008 = 2^1+a0 = 2 (you could make these any number you want really)
If n is odd, then n = 1 mod 2 = a1 mod a2, so a2009 can be n.
If n is even, then n = 0 mod 2 = a0 mod a2, so a2009 can be n.

Edit: I think there was a misunderstanding: when the OP says ai = aj mod ak, he doesn't mean ai is congruent to aj mod ak, but that ai = aj % ak, or in other words that ai is the remainder when aj is divided by ak.


the latter is what I meant.
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
1 2 Next All
Please log in or register to reply.
Live Events Refresh
Next event in 9h 59m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
SteadfastSC 155
SpeCial 79
ROOTCatZ 77
CosmosSc2 52
RuFF_SC2 18
StarCraft: Brood War
Britney 12322
Artosis 682
Shuttle 388
Aegong 72
Sexy 53
Dota 2
monkeys_forever786
NeuroSwarm204
League of Legends
JimRising 1069
Counter-Strike
Stewie2K485
Super Smash Bros
Mew2King54
Other Games
summit1g7414
shahzam699
C9.Mang0216
Trikslyr47
ViBE41
Organizations
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 16 non-featured ]
StarCraft 2
• davetesta38
• intothetv
• AfreecaTV YouTube
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• HerbMon 12
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
League of Legends
• Doublelift5591
Other Games
• Scarra1531
• imaqtpie1355
• Shiphtur262
Upcoming Events
RSL Revival
9h 59m
Zoun vs Classic
Map Test Tournament
10h 59m
Korean StarCraft League
1d 2h
BSL Open LAN 2025 - War…
1d 7h
RSL Revival
1d 9h
Reynor vs Cure
BSL Open LAN 2025 - War…
2 days
RSL Revival
2 days
Online Event
2 days
Wardi Open
3 days
Monday Night Weeklies
3 days
[ Show More ]
Sparkling Tuna Cup
4 days
LiuLi Cup
5 days
The PondCast
6 days
Liquipedia Results

Completed

Proleague 2025-09-10
Chzzk MurlocKing SC1 vs SC2 Cup #2
HCC Europe

Ongoing

BSL 20 Team Wars
KCM Race Survival 2025 Season 3
BSL 21 Points
ASL Season 20
CSL 2025 AUTUMN (S18)
LASL Season 20
RSL Revival: Season 2
Maestros of the Game
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1

Upcoming

2025 Chongqing Offline CUP
BSL World Championship of Poland 2025
IPSL Winter 2025-26
BSL Season 21
SC4ALL: Brood War
BSL 21 Team A
Stellar Fest
SC4ALL: StarCraft II
EC S1
ESL Impact League Season 8
SL Budapest Major 2025
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025
Thunderpick World Champ.
CS Asia Championships 2025
ESL Pro League S22
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.