• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 21:30
CEST 03:30
KST 10:30
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
Team TLMC #5 - Finalists & Open Tournaments0[ASL20] Ro16 Preview Pt2: Turbulence10Classic Games #3: Rogue vs Serral at BlizzCon9[ASL20] Ro16 Preview Pt1: Ascent10Maestros of the Game: Week 1/Play-in Preview12
Community News
StarCraft II 5.0.15 PTR Patch Notes60BSL 2025 Warsaw LAN + Legends Showmatch0Weekly Cups (Sept 8-14): herO & MaxPax split cups4WardiTV TL Team Map Contest #5 Tournaments1SC4ALL $6,000 Open LAN in Philadelphia8
StarCraft 2
General
StarCraft II 5.0.15 PTR Patch Notes #1: Maru - Greatest Players of All Time Weekly Cups (Sept 8-14): herO & MaxPax split cups Team Liquid Map Contest #21 - Presented by Monster Energy SpeCial on The Tasteless Podcast
Tourneys
SC2's Safe House 2 - October 18 & 19 RSL: Revival, a new crowdfunded tournament series Maestros of The Game—$20k event w/ live finals in Paris Sparkling Tuna Cup - Weekly Open Tournament SC4ALL $6,000 Open LAN in Philadelphia
Strategy
Custom Maps
External Content
Mutation # 491 Night Drive Mutation # 490 Masters of Midnight Mutation # 489 Bannable Offense Mutation # 488 What Goes Around
Brood War
General
ASL20 General Discussion Soulkey on ASL S20 BW General Discussion ASL TICKET LIVE help! :D NaDa's Body
Tourneys
[ASL20] Ro16 Group C [ASL20] Ro16 Group D Small VOD Thread 2.0 [Megathread] Daily Proleagues
Strategy
Simple Questions, Simple Answers Muta micro map competition Fighting Spirit mining rates [G] Mineral Boosting
Other Games
General Games
Stormgate/Frost Giant Megathread Borderlands 3 Path of Exile Nintendo Switch Thread General RTS Discussion Thread
Dota 2
Official 'what is Dota anymore' discussion LiquidDota to reintegrate into TL.net
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread
Community
General
UK Politics Mega-thread US Politics Mega-thread Things Aren’t Peaceful in Palestine Russo-Ukrainian War Thread Canadian Politics Mega-thread
Fan Clubs
The Happy Fan Club!
Media & Entertainment
Movie Discussion! [Manga] One Piece Anime Discussion Thread
Sports
2024 - 2026 Football Thread Formula 1 Discussion MLB/Baseball 2023
World Cup 2022
Tech Support
Linksys AE2500 USB WIFI keeps disconnecting Computer Build, Upgrade & Buying Resource Thread High temperatures on bridge(s)
TL Community
BarCraft in Tokyo Japan for ASL Season5 Final The Automated Ban List
Blogs
i'm really bored guys
Peanutsc
I <=> 9
KrillinFromwales
The Personality of a Spender…
TrAiDoS
A very expensive lesson on ma…
Garnet
hello world
radishsoup
Lemme tell you a thing o…
JoinTheRain
RTS Design in Hypercoven
a11
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1874 users

Anyone took putnam math contest today? - Page 2

Blogs > evanthebouncy!
Post a Reply
Prev 1 2 All
stoned_rabbit
Profile Blog Joined November 2009
United States324 Posts
December 06 2009 19:12 GMT
#21
I'm pretty there's an upper bounds on what this sequence can generate. It would be extremely large, but it's there.
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
December 06 2009 19:20 GMT
#22
On December 07 2009 00:29 Hamster1800 wrote:
Okay...I think I've got it.

First let's notice that 2 is a generator modulo 3^r for all r. That is, the set of residues of 2^k mod 3^r over all k are all of the residues relatively prime to 3^r. This can be shown because 2 is a generator mod 9, and then the standard primitive root lifting argument shows it for all r > 2.

Therefore, we know that if 3^r >> n, we can write n as the remainder of 2^k * 3^l mod 3^r for some k and l (let 2^k = n mod 3^r and l be the number of 3s dividing n). All we then need to show are that we can construct 2^k * 3^l and 3^r in a constant number of steps.

We have a_0 = 0. Let a_1 = 2^m for m >> r, k, and l, a_2 = 2^m + 1, and a_3 = 2^m + 3. Now we let a_4 = 2^(m*l + k) and a_5 = 2^(m*r). a_6 = a_4 % a_3 = 2^k * 3^l, and a_7 = a_5 % a_3 = 3^r. Finally a_8 = a_6 % a_7 = (2^k * 3^l) % (3^r) = n.

It's easy to then get a_2009 to be equal to n.


can we go over "we can write n as the remainder of 2^k * 3^l mod 3^r for some k and l (let 2^k = n mod 3^r and l be the number of 3s dividing n). " this part again? I'm not understanding what's going on >_<

I understand that n is definitely in the mod class for 3^r and I understand that 2^k * 3^l can be possibly the same mod class as n but I don't understand how you do it to get 2^k * 3^l to be exactly n still
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
Ganfei
Profile Blog Joined August 2008
Taiwan1439 Posts
December 06 2009 19:23 GMT
#23
this thread hurts my head
You are crushing me like a cheese sandwich
ForTheSwarm
Profile Blog Joined April 2009
United States556 Posts
December 06 2009 19:25 GMT
#24
On December 07 2009 00:40 Commodore wrote:
Show nested quote +
On December 06 2009 22:56 Ludrik wrote:
I've been looking around for interesting maths based problem solving sites and figured you guys might have some suggestions. Currently I'm slowly working through projecteuler.net


Old Putnam problems are available http://www.unl.edu/amc/a-activities/a7-problems/putnamindex.shtml

I went through some of these while preparing for the Putnam exam. Some of these can be done without anything more than freshman calculus, but many require undergraduate real analysis or abstract algebra.


Grad School Math major ftw! Commodore, I'm curious, how did the Putnam go for you?
Whenever I see a dropship, my asshole tingles, because it knows whats coming... - TheAntZ
datscilly
Profile Blog Joined November 2007
United States529 Posts
December 06 2009 19:32 GMT
#25
On December 07 2009 04:20 evanthebouncy! wrote:
Show nested quote +
On December 07 2009 00:29 Hamster1800 wrote:
Okay...I think I've got it.

First let's notice that 2 is a generator modulo 3^r for all r. That is, the set of residues of 2^k mod 3^r over all k are all of the residues relatively prime to 3^r. This can be shown because 2 is a generator mod 9, and then the standard primitive root lifting argument shows it for all r > 2.

Therefore, we know that if 3^r >> n, we can write n as the remainder of 2^k * 3^l mod 3^r for some k and l (let 2^k = n mod 3^r and l be the number of 3s dividing n). All we then need to show are that we can construct 2^k * 3^l and 3^r in a constant number of steps.

We have a_0 = 0. Let a_1 = 2^m for m >> r, k, and l, a_2 = 2^m + 1, and a_3 = 2^m + 3. Now we let a_4 = 2^(m*l + k) and a_5 = 2^(m*r). a_6 = a_4 % a_3 = 2^k * 3^l, and a_7 = a_5 % a_3 = 3^r. Finally a_8 = a_6 % a_7 = (2^k * 3^l) % (3^r) = n.

It's easy to then get a_2009 to be equal to n.


can we go over "we can write n as the remainder of 2^k * 3^l mod 3^r for some k and l (let 2^k = n mod 3^r and l be the number of 3s dividing n). " this part again? I'm not understanding what's going on >_<

I understand that n is definitely in the mod class for 3^r and I understand that 2^k * 3^l can be possibly the same mod class as n but I don't understand how you do it to get 2^k * 3^l to be exactly n still


It should be
(let 2^k = n mod 3^l and l be the number of 3s dividing n)

and is easier to understand if switched
(let l be the number of 3s dividing n and 2^k = n mod 3^l)
Hamster1800
Profile Blog Joined August 2008
United States175 Posts
December 06 2009 19:34 GMT
#26
On December 07 2009 04:32 datscilly wrote:
Show nested quote +
On December 07 2009 04:20 evanthebouncy! wrote:
On December 07 2009 00:29 Hamster1800 wrote:
Okay...I think I've got it.

First let's notice that 2 is a generator modulo 3^r for all r. That is, the set of residues of 2^k mod 3^r over all k are all of the residues relatively prime to 3^r. This can be shown because 2 is a generator mod 9, and then the standard primitive root lifting argument shows it for all r > 2.

Therefore, we know that if 3^r >> n, we can write n as the remainder of 2^k * 3^l mod 3^r for some k and l (let 2^k = n mod 3^r and l be the number of 3s dividing n). All we then need to show are that we can construct 2^k * 3^l and 3^r in a constant number of steps.

We have a_0 = 0. Let a_1 = 2^m for m >> r, k, and l, a_2 = 2^m + 1, and a_3 = 2^m + 3. Now we let a_4 = 2^(m*l + k) and a_5 = 2^(m*r). a_6 = a_4 % a_3 = 2^k * 3^l, and a_7 = a_5 % a_3 = 3^r. Finally a_8 = a_6 % a_7 = (2^k * 3^l) % (3^r) = n.

It's easy to then get a_2009 to be equal to n.


can we go over "we can write n as the remainder of 2^k * 3^l mod 3^r for some k and l (let 2^k = n mod 3^r and l be the number of 3s dividing n). " this part again? I'm not understanding what's going on >_<

I understand that n is definitely in the mod class for 3^r and I understand that 2^k * 3^l can be possibly the same mod class as n but I don't understand how you do it to get 2^k * 3^l to be exactly n still


It should be
Show nested quote +
(let 2^k = n mod 3^l and l be the number of 3s dividing n)

and is easier to understand if switched
Show nested quote +
(let l be the number of 3s dividing n and 2^k = n mod 3^l)


It still needs to be fixed slightly. My apologies. You have to write n = 3^l * b where b is not a multiple of 3. Then we know that (because 2 is a generator mod 3^r) that there is some k such that 2^k = b. These are the k and l you want.

I don't have time to prove that 2 is a generator mod 3^r right now. If I get time I'll put that proof here, but it's pretty standard when proving the primitive root theorem.
D is for Diamond, E is for Everything Else
Commodore
Profile Joined January 2008
United States97 Posts
Last Edited: 2009-12-06 20:37:58
December 06 2009 20:32 GMT
#27
On December 07 2009 04:25 ForTheSwarm wrote:
Show nested quote +
On December 07 2009 00:40 Commodore wrote:
On December 06 2009 22:56 Ludrik wrote:
I've been looking around for interesting maths based problem solving sites and figured you guys might have some suggestions. Currently I'm slowly working through projecteuler.net


Old Putnam problems are available http://www.unl.edu/amc/a-activities/a7-problems/putnamindex.shtml

I went through some of these while preparing for the Putnam exam. Some of these can be done without anything more than freshman calculus, but many require undergraduate real analysis or abstract algebra.


Grad School Math major ftw! Commodore, I'm curious, how did the Putnam go for you?


I scored 11 out of 120 points, which put me in the top 26%. This is one tough exam!

You going to take it next year?
meaculpa
Profile Blog Joined November 2009
United States119 Posts
December 06 2009 21:24 GMT
#28
Might be a good time for you to put your genius mind to use and solve the problem for us, Klockan3? Now that you have the proper wording, the solution should trivially follow from the definitions.
Blessed is the mind too small for doubt.
qrs
Profile Blog Joined December 2007
United States3637 Posts
Last Edited: 2009-12-07 06:55:37
December 06 2009 21:57 GMT
#29
I took it: pretty fun, even though I only got two of them. By chance, this was one of the ones I (think I) got. Hamster's answer looks more or less like it, but all that dense terminology and symbolism makes my eyes hurt to look at, so I'll just post an example of how it works, which is probably easier to read, albeit less formal.

Just for instance, let's make "n" 500. Lets call j the smallest integer such that 2^j is more than n, so in this case j = 9.

a0: 0
a1: 1 (0 + 2^0)
a2: 2^j + 1 (a1 + 2^j) = 513
a3: 2^(j+1) = 1024
a4 a3 mod a2 = 2^j - 1 = 511
a5: 2^(j+n-1) = 2^508 = a lot
...
a2009 a5 mod a4 = 1 * (j + n - 1 - j - 1) = 500.*

Of course for my example of 500 you don't need to do it that way, but the method should work for any number at all.

* edit: intuitive demonstration, since I see there was another page of posts discussing this:

512 /512 = 1. 512/511 = 1 remainder 1.
1024/512 = 2. 1024/511 = 2 remainder 2.
and so on: with each go-round, the remainder "lags" by one more.

Obviously that's not a formal proof, but it should be enough to let anyone see why it's true. Even on the test itself I didn't really do a good job of proving this formally, so I'll probably lose points there.

edit 2:
On December 07 2009 04:12 stoned_rabbit wrote:
I'm pretty there's an upper bounds on what this sequence can generate. It would be extremely large, but it's there.

The reason there's no upper bound on what it can generate is that there is no upper bound on what "k" (2^k) can be.
'As per the American Heart Association, the beat of the Bee Gees song "Stayin' Alive" provides an ideal rhythm in terms of beats per minute to use for hands-only CPR. One can also hum Queen's "Another One Bites The Dust".' —Wikipedia
Prev 1 2 All
Please log in or register to reply.
Live Events Refresh
Next event in 8h 30m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
WinterStarcraft415
SteadfastSC 180
RuFF_SC2 124
CosmosSc2 61
Vindicta 10
StarCraft: Brood War
Aegong 1739
Artosis 672
Shuttle 521
Light 96
NaDa 17
ajuk12(nOOB) 4
Dota 2
monkeys_forever835
NeuroSwarm156
Counter-Strike
Stewie2K548
Fnx 310
PGG 86
Super Smash Bros
C9.Mang0367
Mew2King44
Other Games
summit1g6604
shahzam926
JimRising 653
Trikslyr56
ViBE39
Nina23
Organizations
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 14 non-featured ]
StarCraft 2
• davetesta27
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• RayReign 17
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
League of Legends
• Doublelift5200
Other Games
• Scarra1062
Upcoming Events
RSL Revival
8h 30m
Zoun vs Classic
Map Test Tournament
9h 30m
Korean StarCraft League
1d 1h
BSL Open LAN 2025 - War…
1d 6h
RSL Revival
1d 8h
Reynor vs Cure
BSL Open LAN 2025 - War…
2 days
RSL Revival
2 days
Online Event
2 days
Wardi Open
3 days
Monday Night Weeklies
3 days
[ Show More ]
Sparkling Tuna Cup
4 days
LiuLi Cup
5 days
The PondCast
6 days
Liquipedia Results

Completed

Proleague 2025-09-10
Chzzk MurlocKing SC1 vs SC2 Cup #2
HCC Europe

Ongoing

BSL 20 Team Wars
KCM Race Survival 2025 Season 3
BSL 21 Points
ASL Season 20
CSL 2025 AUTUMN (S18)
LASL Season 20
RSL Revival: Season 2
Maestros of the Game
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1

Upcoming

2025 Chongqing Offline CUP
BSL World Championship of Poland 2025
IPSL Winter 2025-26
BSL Season 21
SC4ALL: Brood War
BSL 21 Team A
Stellar Fest
SC4ALL: StarCraft II
EC S1
ESL Impact League Season 8
SL Budapest Major 2025
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025
Thunderpick World Champ.
CS Asia Championships 2025
ESL Pro League S22
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.