• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EST 14:33
CET 20:33
KST 04:33
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
SC2 All-Star Invitational: Tournament Preview5RSL Revival - 2025 Season Finals Preview8RSL Season 3 - Playoffs Preview0RSL Season 3 - RO16 Groups C & D Preview0RSL Season 3 - RO16 Groups A & B Preview2
Community News
BSL Season 2025 - Full Overview and Conclusion6Weekly Cups (Jan 5-11): Clem wins big offline, Trigger upsets4$21,000 Rongyi Cup Season 3 announced (Jan 22-Feb 7)16Weekly Cups (Dec 29-Jan 4): Protoss rolls, 2v2 returns7[BSL21] Non-Korean Championship - Starts Jan 105
StarCraft 2
General
Stellar Fest "01" Jersey Charity Auction SC2 All-Star Invitational: Tournament Preview Weekly Cups (Jan 5-11): Clem wins big offline, Trigger upsets When will we find out if there are more tournament SC2 Spotted on the EWC 2026 list?
Tourneys
SC2 All-Star Invitational: Jan 17-18 Sparkling Tuna Cup - Weekly Open Tournament SC2 AI Tournament 2026 $21,000 Rongyi Cup Season 3 announced (Jan 22-Feb 7) OSC Season 13 World Championship
Strategy
Simple Questions Simple Answers
Custom Maps
Map Editor closed ?
External Content
Mutation # 509 Doomsday Report Mutation # 508 Violent Night Mutation # 507 Well Trained Mutation # 506 Warp Zone
Brood War
General
[ASL21] Potential Map Candidates BGH Auto Balance -> http://bghmmr.eu/ Video Footage from 2005: The Birth of G2 in Spain BW General Discussion BSL Season 2025 - Full Overview and Conclusion
Tourneys
[Megathread] Daily Proleagues [BSL21] Non-Korean Championship - Starts Jan 10 Small VOD Thread 2.0 Azhi's Colosseum - Season 2
Strategy
Soma's 9 hatch build from ASL Game 2 Simple Questions, Simple Answers Game Theory for Starcraft Current Meta
Other Games
General Games
Stormgate/Frost Giant Megathread Beyond All Reason Awesome Games Done Quick 2026! Nintendo Switch Thread Mechabellum
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
Vanilla Mini Mafia Mafia Game Mode Feedback/Ideas
Community
General
US Politics Mega-thread Things Aren’t Peaceful in Palestine Russo-Ukrainian War Thread Canadian Politics Mega-thread European Politico-economics QA Mega-thread
Fan Clubs
The IdrA Fan Club
Media & Entertainment
Anime Discussion Thread [Manga] One Piece
Sports
2024 - 2026 Football Thread
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
The Automated Ban List
Blogs
My 2025 Magic: The Gathering…
DARKING
Physical Exercise (HIIT) Bef…
TrAiDoS
Life Update and thoughts.
FuDDx
How do archons sleep?
8882
James Bond movies ranking - pa…
Topin
Customize Sidebar...

Website Feedback

Closed Threads



Active: 2170 users

The Big Programming Thread - Page 161

Forum Index > General Forum
Post a Reply
Prev 1 159 160 161 162 163 1032 Next
Thread Rules
1. This is not a "do my homework for me" thread. If you have specific questions, ask, but don't post an assignment or homework problem and expect an exact solution.
2. No recruiting for your cockamamie projects (you won't replace facebook with 3 dudes you found on the internet and $20)
3. If you can't articulate why a language is bad, don't start slinging shit about it. Just remember that nothing is worse than making CSS IE6 compatible.
4. Use [code] tags to format code blocks.
tofucake
Profile Blog Joined October 2009
Hyrule19189 Posts
August 29 2012 19:21 GMT
#3201
$sql = "INSERT INTO test VALUES(?);";
$sql = $sql . $sql . $sql;

might work...I use my own wrapper though so I haven't actually tried this.
Liquipediaasante sana squash banana
nakam
Profile Joined April 2010
Sweden245 Posts
August 29 2012 19:30 GMT
#3202
On August 30 2012 04:21 tofucake wrote:
$sql = "INSERT INTO test VALUES(?);";
$sql = $sql . $sql . $sql;

might work...I use my own wrapper though so I haven't actually tried this.

That would result in
$sql = "INSERT INTO test VALUES(?);INSERT INTO test VALUES(?);INSERT INTO test VALUES(?);";

To then bind this with
$stmt -> bind_param("sss", $value[0],$value[1],$value[2]);

becomes extremely messy, especially since the length of the array varies, or did I misunderstand you? Don't know if this is faster.
TL Local Timezone Script - http://www.teamliquid.net/forum/viewmessage.php?topic_id=277156
Deleted User 101379
Profile Blog Joined August 2010
4849 Posts
August 29 2012 20:24 GMT
#3203
On August 30 2012 04:17 nakam wrote:
Show nested quote +
On August 30 2012 03:58 tofucake wrote:
$sql = "INSERT INTO test VALUES(?, ?, ?)";
$values = array('one', 'two', 'three');

if($stmt = $db -> prepare($sql)) $stmt->execute($values);

Well that's if I wanted to insert the values in different columns. I want to insert multiple rows.


which DB library?

In PDO you can simply use named parameters:

$sql = "INSERT INTO test VALUES (:a, :b, :c)";
$sth = $dbh->prepare($sql);
foreach ($values as $value)
{
$sth->execute(array(
":a" => $value['a'],
":b" => $value['b'],
...
));
}
tofucake
Profile Blog Joined October 2009
Hyrule19189 Posts
August 29 2012 20:40 GMT
#3204
my own
Liquipediaasante sana squash banana
nakam
Profile Joined April 2010
Sweden245 Posts
Last Edited: 2012-08-29 20:47:34
August 29 2012 20:46 GMT
#3205
On August 30 2012 05:24 Morfildur wrote:
Show nested quote +
On August 30 2012 04:17 nakam wrote:
On August 30 2012 03:58 tofucake wrote:
$sql = "INSERT INTO test VALUES(?, ?, ?)";
$values = array('one', 'two', 'three');

if($stmt = $db -> prepare($sql)) $stmt->execute($values);

Well that's if I wanted to insert the values in different columns. I want to insert multiple rows.


which DB library?

In PDO you can simply use named parameters:

$sql = "INSERT INTO test VALUES (:a, :b, :c)";
$sth = $dbh->prepare($sql);
foreach ($values as $value)
{
$sth->execute(array(
":a" => $value['a'],
":b" => $value['b'],
...
));
}

MySQLi unfortunately.
TL Local Timezone Script - http://www.teamliquid.net/forum/viewmessage.php?topic_id=277156
frogmelter
Profile Blog Joined April 2009
United States971 Posts
Last Edited: 2012-08-30 06:54:26
August 30 2012 06:51 GMT
#3206
On August 29 2012 15:43 Blisse wrote:
Show nested quote +
On August 29 2012 15:21 frogmelter wrote:
On August 29 2012 14:53 Blisse wrote:
On August 29 2012 14:49 frogmelter wrote:
For an assignment at school, I'm supposed to read in a number and find all the factors and bold the ones that are prime.

This is incredibly simple, except my professor put in

9223372036854775805
9223372036854775806
9223372036854775807

as some of the inputs that we need to test. This obviously takes a super long time to compute. I'm stumped on how I would optimize my code enough so that it would run quickly.

I can think of a clever way to get it to display all the factors, but not to calculate which ones are prime, especially for such a huge number. Can anyone give me some ideas?


That's a very... interesting assignment, at least the way it's worded.

By my gut, if you get the prime factorization, from there you can calculate all unique permutations of those that get you something less than the inputted number, which simply gives you all the factors of the number. Since you have the prime factorization, you should have all the primes you need. In my mind though, that seems like it'll take a very long time, but it might not!


Seems like he just wants you to implement a very good prime factorization method. You'll have to make a call on whether you want to make one yourself or just follow the really optimized ones online.


Calculating all the prime factors is no good, since I need to calculate all the factors as well.

This is what I have so far.

+ Show Spoiler +

public void calcPrime()
{
if (value==2)
{
setPrime(true);
return;
}
if (value%3==0)
{
setPrime(false);
return;
}
if (value%10==5)
{
setPrime(false);
return;
}
if (value%2==0)
{
setPrime(false);
return;
}
if (value==1)
{
setPrime(false);
return;
}
for(long l=3; true; l++)
{
long square = l * l;
if (square > getValue())
{
break;
}
l = getNextTestPrime(l, square);
if (l == -1l)
{
setPrime(false);
return;
}
if(value%l==0)
{
setPrime(false);
return;
}
}
setPrime(true);

}
private Long getNextTestPrime(long l, long square)
{
while (l<square)
{
l=l+2;
if (!(l%3==0||l%5==0))
{
return l;
}
}
return (long) -1;
}


This will only test the numbers that are odd and are not divisible by 3 or end in 5 [the ones that end in 0 are caught by the mod 2 case]

That's about as optimizes as I think I can get. Still no good on the 9 * 10^20 number so far.


Hey, yup, I see what you're going for here, but I think you misunderstood my idea.

I'm not in Computer Science, so I don't remember the proof or theorem by heart, but I took a course on proofs which included prime factorization.

Which stated something like, given N = (f1)^(k1) * (f2)^(k2) * ... * (fn)^(kn), where f1, f2 ... fn are all primes, all possible factors can be determined by choosing different exponents, qm, such that 0 <= qm <= km, for 1 <= m <= n.

I'll give an example since that's not super clear.
+ Show Spoiler +


Given 144 = 2^4 * 3^2 is the prime factorization. 2 and 3 are the ONLY prime factors, since that's what the prime factorization gives you.

From there, you have 2, with exponents from 0 to 4, and 3, with exponents from 0 to 2.

So all the factors are,

2^0 * 3^0 = 1
2^1 * 3^0 = 2
2^2 * 3^0 = 4
2^3 * 3^0 = 8
2^4 * 3^0 = 16
2^0 * 3^1 = 3
2^1 * 3^1 = 6
2^2 * 3^1 = 12
2^3 * 3^1 = 24
2^4 * 3^1 = 48
2^0 * 3^2 = 9
2^1 * 3^2 = 18
2^2 * 3^2 = 36
2^3 * 3^2 = 72
2^4 * 3^2 = 144


Hope that's a bit clearer.

1. Find the prime factorization.
2. Use the above method/theorem to calculate all the permutations, which gives you all the factors.

By breaking the problem into parts, it should be a lot less complicated, no?

I wish I remembered the name of the theorem to make it clearer for you.

Best of luck.


Well, I've written code to find all the prime factors.

So I have a list of something like 2^2 * 3^2 * 5^2 * 7^2

However, I'm stumped on how I would multiply everything to get the actual factors.

For example, the number 44100 is

2^2 * 3^2 * 5^2 * 7^2

I would have to multiply everything by each other

ie.

2^1 * 3^1
2^1 * 3^2
2^1 * 3^1 * 5^1
2^1 * 3^1 * 5^2
2^1 * 3^1 * 7^1
2^1 * 3^1 * 7^2
2^1 * 3^1 * 5^1 * 7^1
2^1 * 3^1 * 5^1 * 7^2
2^2 * 3^1
2^2 * 3^2
2^2 * 3^1 * 5^1
2^2 * 3^1 * 5^2
2^2 * 3^1 * 7^1
2^2 * 3^1 * 7^2
2^2 * 3^1 * 5^1 * 7^1
2^2 * 3^1 * 5^1 * 7^2

I don't know how I would go about that, since there is a variable number of prime factors [If I chose 900, then it would only be 2^2 * 3^2 * 5^2]. If the number of prime factors were constant, it would be really simple

I don't know how I would calculate it so that it multiplies every permutation. Especially since sometimes I would have to skip middle values ie.
2^2 * 3^0 * 5^2 * 7^0 * 11^2

This seems like some sort of recursion that I need to do perhaps... Any ideas are greatly appreciated
TL+ Member
DanceSC
Profile Blog Joined March 2008
United States751 Posts
Last Edited: 2012-08-30 08:37:37
August 30 2012 08:30 GMT
#3207
On August 30 2012 05:46 nakam wrote:
Show nested quote +
On August 30 2012 05:24 Morfildur wrote:
On August 30 2012 04:17 nakam wrote:
On August 30 2012 03:58 tofucake wrote:
$sql = "INSERT INTO test VALUES(?, ?, ?)";
$values = array('one', 'two', 'three');

if($stmt = $db -> prepare($sql)) $stmt->execute($values);

Well that's if I wanted to insert the values in different columns. I want to insert multiple rows.


which DB library?

In PDO you can simply use named parameters:

$sql = "INSERT INTO test VALUES (:a, :b, :c)";
$sth = $dbh->prepare($sql);
foreach ($values as $value)
{
$sth->execute(array(
":a" => $value['a'],
":b" => $value['b'],
...
));
}

MySQLi unfortunately.

if I am not mistaken, woudln't you insert multiple rows like?
$sql = "insert into test (fielda, fieldb, fieldc) values (a1, a2, a3) (b1, b2, b3) (c1,c2,c3)"

so with an array... (assuming php and 'one' 'two' 'three' each get their seperate row...)
$sql = "insert into test (columnName) values ";
for ($i=0;$i<count($array);$i++) {
$sql .= "(".$array[$i].")";
}
$query = mysql_query($sql) or die(mysql_error());

EDIT: There would be a comma delimiter:
so $string .= ",(".$array[$i].")";
and then say $sql .= substr($string,1);
(This will remove the first comma)
Dance.943 || "I think he's just going to lose. There's only so many ways you can lose. And he's going to make some kind of units. And I'm going to attack him, and then all his stuff is going to die. That's about the best prediction that I can make" - NonY
spudde123
Profile Joined February 2012
4814 Posts
Last Edited: 2012-08-30 08:50:18
August 30 2012 08:48 GMT
#3208
I didn't spend too much time thinking whether the following is the best way of producing all the possible products but at least consider it food for thought!

Let's say you have a prime factorization, each prime with some exponent. Now consider that you drop the exponents and instead have a list of prime factors and the number of times a prime is in the list is based on the exponent.
So if you have a prime factorization 2^2 * 3^2 * 5^2 * 7^2 consider it as a list 22335577.
Now if you want to list the products of each different subset of this list you can do the following:

Start with an empty list L
For each member N in the list of primes
Multiply each member of L with N and add the new numbers you get to L if they are not already there
add N to L if it is not already there
end

And in the end L will include all the divisors of your original number (other than 1)

Now obviously you don't need to produce this list but instead if you have the primes and their exponents you can just loop for each separate prime from 1 to the exponent to achieve the same goal but I thought this was more illustrative.
waxypants
Profile Blog Joined September 2009
United States479 Posts
Last Edited: 2012-08-30 20:31:17
August 30 2012 20:24 GMT
#3209
On August 30 2012 15:51 frogmelter wrote:
Show nested quote +
On August 29 2012 15:43 Blisse wrote:
On August 29 2012 15:21 frogmelter wrote:
On August 29 2012 14:53 Blisse wrote:
On August 29 2012 14:49 frogmelter wrote:
For an assignment at school, I'm supposed to read in a number and find all the factors and bold the ones that are prime.

This is incredibly simple, except my professor put in

9223372036854775805
9223372036854775806
9223372036854775807

as some of the inputs that we need to test. This obviously takes a super long time to compute. I'm stumped on how I would optimize my code enough so that it would run quickly.

I can think of a clever way to get it to display all the factors, but not to calculate which ones are prime, especially for such a huge number. Can anyone give me some ideas?


That's a very... interesting assignment, at least the way it's worded.

By my gut, if you get the prime factorization, from there you can calculate all unique permutations of those that get you something less than the inputted number, which simply gives you all the factors of the number. Since you have the prime factorization, you should have all the primes you need. In my mind though, that seems like it'll take a very long time, but it might not!


Seems like he just wants you to implement a very good prime factorization method. You'll have to make a call on whether you want to make one yourself or just follow the really optimized ones online.


Calculating all the prime factors is no good, since I need to calculate all the factors as well.

This is what I have so far.

+ Show Spoiler +

public void calcPrime()
{
if (value==2)
{
setPrime(true);
return;
}
if (value%3==0)
{
setPrime(false);
return;
}
if (value%10==5)
{
setPrime(false);
return;
}
if (value%2==0)
{
setPrime(false);
return;
}
if (value==1)
{
setPrime(false);
return;
}
for(long l=3; true; l++)
{
long square = l * l;
if (square > getValue())
{
break;
}
l = getNextTestPrime(l, square);
if (l == -1l)
{
setPrime(false);
return;
}
if(value%l==0)
{
setPrime(false);
return;
}
}
setPrime(true);

}
private Long getNextTestPrime(long l, long square)
{
while (l<square)
{
l=l+2;
if (!(l%3==0||l%5==0))
{
return l;
}
}
return (long) -1;
}


This will only test the numbers that are odd and are not divisible by 3 or end in 5 [the ones that end in 0 are caught by the mod 2 case]

That's about as optimizes as I think I can get. Still no good on the 9 * 10^20 number so far.


Hey, yup, I see what you're going for here, but I think you misunderstood my idea.

I'm not in Computer Science, so I don't remember the proof or theorem by heart, but I took a course on proofs which included prime factorization.

Which stated something like, given N = (f1)^(k1) * (f2)^(k2) * ... * (fn)^(kn), where f1, f2 ... fn are all primes, all possible factors can be determined by choosing different exponents, qm, such that 0 <= qm <= km, for 1 <= m <= n.

I'll give an example since that's not super clear.
+ Show Spoiler +


Given 144 = 2^4 * 3^2 is the prime factorization. 2 and 3 are the ONLY prime factors, since that's what the prime factorization gives you.

From there, you have 2, with exponents from 0 to 4, and 3, with exponents from 0 to 2.

So all the factors are,

2^0 * 3^0 = 1
2^1 * 3^0 = 2
2^2 * 3^0 = 4
2^3 * 3^0 = 8
2^4 * 3^0 = 16
2^0 * 3^1 = 3
2^1 * 3^1 = 6
2^2 * 3^1 = 12
2^3 * 3^1 = 24
2^4 * 3^1 = 48
2^0 * 3^2 = 9
2^1 * 3^2 = 18
2^2 * 3^2 = 36
2^3 * 3^2 = 72
2^4 * 3^2 = 144


Hope that's a bit clearer.

1. Find the prime factorization.
2. Use the above method/theorem to calculate all the permutations, which gives you all the factors.

By breaking the problem into parts, it should be a lot less complicated, no?

I wish I remembered the name of the theorem to make it clearer for you.

Best of luck.


Well, I've written code to find all the prime factors.

So I have a list of something like 2^2 * 3^2 * 5^2 * 7^2

However, I'm stumped on how I would multiply everything to get the actual factors.

For example, the number 44100 is

2^2 * 3^2 * 5^2 * 7^2

I would have to multiply everything by each other

ie.

2^1 * 3^1
2^1 * 3^2
2^1 * 3^1 * 5^1
2^1 * 3^1 * 5^2
2^1 * 3^1 * 7^1
2^1 * 3^1 * 7^2
2^1 * 3^1 * 5^1 * 7^1
2^1 * 3^1 * 5^1 * 7^2
2^2 * 3^1
2^2 * 3^2
2^2 * 3^1 * 5^1
2^2 * 3^1 * 5^2
2^2 * 3^1 * 7^1
2^2 * 3^1 * 7^2
2^2 * 3^1 * 5^1 * 7^1
2^2 * 3^1 * 5^1 * 7^2

I don't know how I would go about that, since there is a variable number of prime factors [If I chose 900, then it would only be 2^2 * 3^2 * 5^2]. If the number of prime factors were constant, it would be really simple

I don't know how I would calculate it so that it multiplies every permutation. Especially since sometimes I would have to skip middle values ie.
2^2 * 3^0 * 5^2 * 7^0 * 11^2

This seems like some sort of recursion that I need to do perhaps... Any ideas are greatly appreciated


Yes it is a recursion. Here is a python solution. I didn't completely test but the results look about right at a glance).


def factors_from_prime_factors(prime_factors):
if not prime_factors:
return []
else:
factors = factors_from_prime_factors(prime_factors[1:])
factors = prime_factors + map(lambda x: x*prime_factors[0], factors)
factors = list(set(factors))
factors.sort()
return factors


The prime factors must be given as a list like [2, 2, 3, 3, 5, 5, 7, 7] in the 44100 case.

>>> factors_from_prime_factors([2, 2, 3, 3, 5, 5, 7, 7])
[2, 3, 4, 5, 6, 7, 10, 12, 14, 20, 28, 36, 60, 84, 180, 252, 900, 1260, 6300, 44100]

edit: sorting can be taken out or done outside the function, same with the conversion to a set (it just removes duplicates), but I just put them in one function for simplicity and to look nice
zzdd
Profile Joined December 2010
United States484 Posts
August 30 2012 20:34 GMT
#3210
On August 30 2012 15:51 frogmelter wrote:
Show nested quote +
On August 29 2012 15:43 Blisse wrote:
On August 29 2012 15:21 frogmelter wrote:
On August 29 2012 14:53 Blisse wrote:
On August 29 2012 14:49 frogmelter wrote:
For an assignment at school, I'm supposed to read in a number and find all the factors and bold the ones that are prime.

This is incredibly simple, except my professor put in

9223372036854775805
9223372036854775806
9223372036854775807

as some of the inputs that we need to test. This obviously takes a super long time to compute. I'm stumped on how I would optimize my code enough so that it would run quickly.

I can think of a clever way to get it to display all the factors, but not to calculate which ones are prime, especially for such a huge number. Can anyone give me some ideas?


That's a very... interesting assignment, at least the way it's worded.

By my gut, if you get the prime factorization, from there you can calculate all unique permutations of those that get you something less than the inputted number, which simply gives you all the factors of the number. Since you have the prime factorization, you should have all the primes you need. In my mind though, that seems like it'll take a very long time, but it might not!


Seems like he just wants you to implement a very good prime factorization method. You'll have to make a call on whether you want to make one yourself or just follow the really optimized ones online.


Calculating all the prime factors is no good, since I need to calculate all the factors as well.

This is what I have so far.

+ Show Spoiler +

public void calcPrime()
{
if (value==2)
{
setPrime(true);
return;
}
if (value%3==0)
{
setPrime(false);
return;
}
if (value%10==5)
{
setPrime(false);
return;
}
if (value%2==0)
{
setPrime(false);
return;
}
if (value==1)
{
setPrime(false);
return;
}
for(long l=3; true; l++)
{
long square = l * l;
if (square > getValue())
{
break;
}
l = getNextTestPrime(l, square);
if (l == -1l)
{
setPrime(false);
return;
}
if(value%l==0)
{
setPrime(false);
return;
}
}
setPrime(true);

}
private Long getNextTestPrime(long l, long square)
{
while (l<square)
{
l=l+2;
if (!(l%3==0||l%5==0))
{
return l;
}
}
return (long) -1;
}


This will only test the numbers that are odd and are not divisible by 3 or end in 5 [the ones that end in 0 are caught by the mod 2 case]

That's about as optimizes as I think I can get. Still no good on the 9 * 10^20 number so far.


Hey, yup, I see what you're going for here, but I think you misunderstood my idea.

I'm not in Computer Science, so I don't remember the proof or theorem by heart, but I took a course on proofs which included prime factorization.

Which stated something like, given N = (f1)^(k1) * (f2)^(k2) * ... * (fn)^(kn), where f1, f2 ... fn are all primes, all possible factors can be determined by choosing different exponents, qm, such that 0 <= qm <= km, for 1 <= m <= n.

I'll give an example since that's not super clear.
+ Show Spoiler +


Given 144 = 2^4 * 3^2 is the prime factorization. 2 and 3 are the ONLY prime factors, since that's what the prime factorization gives you.

From there, you have 2, with exponents from 0 to 4, and 3, with exponents from 0 to 2.

So all the factors are,

2^0 * 3^0 = 1
2^1 * 3^0 = 2
2^2 * 3^0 = 4
2^3 * 3^0 = 8
2^4 * 3^0 = 16
2^0 * 3^1 = 3
2^1 * 3^1 = 6
2^2 * 3^1 = 12
2^3 * 3^1 = 24
2^4 * 3^1 = 48
2^0 * 3^2 = 9
2^1 * 3^2 = 18
2^2 * 3^2 = 36
2^3 * 3^2 = 72
2^4 * 3^2 = 144


Hope that's a bit clearer.

1. Find the prime factorization.
2. Use the above method/theorem to calculate all the permutations, which gives you all the factors.

By breaking the problem into parts, it should be a lot less complicated, no?

I wish I remembered the name of the theorem to make it clearer for you.

Best of luck.


Well, I've written code to find all the prime factors.

So I have a list of something like 2^2 * 3^2 * 5^2 * 7^2

However, I'm stumped on how I would multiply everything to get the actual factors.

For example, the number 44100 is

2^2 * 3^2 * 5^2 * 7^2

I would have to multiply everything by each other

ie.

2^1 * 3^1
2^1 * 3^2
2^1 * 3^1 * 5^1
2^1 * 3^1 * 5^2
2^1 * 3^1 * 7^1
2^1 * 3^1 * 7^2
2^1 * 3^1 * 5^1 * 7^1
2^1 * 3^1 * 5^1 * 7^2
2^2 * 3^1
2^2 * 3^2
2^2 * 3^1 * 5^1
2^2 * 3^1 * 5^2
2^2 * 3^1 * 7^1
2^2 * 3^1 * 7^2
2^2 * 3^1 * 5^1 * 7^1
2^2 * 3^1 * 5^1 * 7^2

I don't know how I would go about that, since there is a variable number of prime factors [If I chose 900, then it would only be 2^2 * 3^2 * 5^2]. If the number of prime factors were constant, it would be really simple

I don't know how I would calculate it so that it multiplies every permutation. Especially since sometimes I would have to skip middle values ie.
2^2 * 3^0 * 5^2 * 7^0 * 11^2

This seems like some sort of recursion that I need to do perhaps... Any ideas are greatly appreciated

Google Miller Rabin. It will take you maybe an hour to do and is way simpler.
waxypants
Profile Blog Joined September 2009
United States479 Posts
August 30 2012 20:40 GMT
#3211
On August 31 2012 05:34 zzdd wrote:
Show nested quote +
On August 30 2012 15:51 frogmelter wrote:
On August 29 2012 15:43 Blisse wrote:
On August 29 2012 15:21 frogmelter wrote:
On August 29 2012 14:53 Blisse wrote:
On August 29 2012 14:49 frogmelter wrote:
For an assignment at school, I'm supposed to read in a number and find all the factors and bold the ones that are prime.

This is incredibly simple, except my professor put in

9223372036854775805
9223372036854775806
9223372036854775807

as some of the inputs that we need to test. This obviously takes a super long time to compute. I'm stumped on how I would optimize my code enough so that it would run quickly.

I can think of a clever way to get it to display all the factors, but not to calculate which ones are prime, especially for such a huge number. Can anyone give me some ideas?


That's a very... interesting assignment, at least the way it's worded.

By my gut, if you get the prime factorization, from there you can calculate all unique permutations of those that get you something less than the inputted number, which simply gives you all the factors of the number. Since you have the prime factorization, you should have all the primes you need. In my mind though, that seems like it'll take a very long time, but it might not!


Seems like he just wants you to implement a very good prime factorization method. You'll have to make a call on whether you want to make one yourself or just follow the really optimized ones online.


Calculating all the prime factors is no good, since I need to calculate all the factors as well.

This is what I have so far.

+ Show Spoiler +

public void calcPrime()
{
if (value==2)
{
setPrime(true);
return;
}
if (value%3==0)
{
setPrime(false);
return;
}
if (value%10==5)
{
setPrime(false);
return;
}
if (value%2==0)
{
setPrime(false);
return;
}
if (value==1)
{
setPrime(false);
return;
}
for(long l=3; true; l++)
{
long square = l * l;
if (square > getValue())
{
break;
}
l = getNextTestPrime(l, square);
if (l == -1l)
{
setPrime(false);
return;
}
if(value%l==0)
{
setPrime(false);
return;
}
}
setPrime(true);

}
private Long getNextTestPrime(long l, long square)
{
while (l<square)
{
l=l+2;
if (!(l%3==0||l%5==0))
{
return l;
}
}
return (long) -1;
}


This will only test the numbers that are odd and are not divisible by 3 or end in 5 [the ones that end in 0 are caught by the mod 2 case]

That's about as optimizes as I think I can get. Still no good on the 9 * 10^20 number so far.


Hey, yup, I see what you're going for here, but I think you misunderstood my idea.

I'm not in Computer Science, so I don't remember the proof or theorem by heart, but I took a course on proofs which included prime factorization.

Which stated something like, given N = (f1)^(k1) * (f2)^(k2) * ... * (fn)^(kn), where f1, f2 ... fn are all primes, all possible factors can be determined by choosing different exponents, qm, such that 0 <= qm <= km, for 1 <= m <= n.

I'll give an example since that's not super clear.
+ Show Spoiler +


Given 144 = 2^4 * 3^2 is the prime factorization. 2 and 3 are the ONLY prime factors, since that's what the prime factorization gives you.

From there, you have 2, with exponents from 0 to 4, and 3, with exponents from 0 to 2.

So all the factors are,

2^0 * 3^0 = 1
2^1 * 3^0 = 2
2^2 * 3^0 = 4
2^3 * 3^0 = 8
2^4 * 3^0 = 16
2^0 * 3^1 = 3
2^1 * 3^1 = 6
2^2 * 3^1 = 12
2^3 * 3^1 = 24
2^4 * 3^1 = 48
2^0 * 3^2 = 9
2^1 * 3^2 = 18
2^2 * 3^2 = 36
2^3 * 3^2 = 72
2^4 * 3^2 = 144


Hope that's a bit clearer.

1. Find the prime factorization.
2. Use the above method/theorem to calculate all the permutations, which gives you all the factors.

By breaking the problem into parts, it should be a lot less complicated, no?

I wish I remembered the name of the theorem to make it clearer for you.

Best of luck.


Well, I've written code to find all the prime factors.

So I have a list of something like 2^2 * 3^2 * 5^2 * 7^2

However, I'm stumped on how I would multiply everything to get the actual factors.

For example, the number 44100 is

2^2 * 3^2 * 5^2 * 7^2

I would have to multiply everything by each other

ie.

2^1 * 3^1
2^1 * 3^2
2^1 * 3^1 * 5^1
2^1 * 3^1 * 5^2
2^1 * 3^1 * 7^1
2^1 * 3^1 * 7^2
2^1 * 3^1 * 5^1 * 7^1
2^1 * 3^1 * 5^1 * 7^2
2^2 * 3^1
2^2 * 3^2
2^2 * 3^1 * 5^1
2^2 * 3^1 * 5^2
2^2 * 3^1 * 7^1
2^2 * 3^1 * 7^2
2^2 * 3^1 * 5^1 * 7^1
2^2 * 3^1 * 5^1 * 7^2

I don't know how I would go about that, since there is a variable number of prime factors [If I chose 900, then it would only be 2^2 * 3^2 * 5^2]. If the number of prime factors were constant, it would be really simple

I don't know how I would calculate it so that it multiplies every permutation. Especially since sometimes I would have to skip middle values ie.
2^2 * 3^0 * 5^2 * 7^0 * 11^2

This seems like some sort of recursion that I need to do perhaps... Any ideas are greatly appreciated

Google Miller Rabin. It will take you maybe an hour to do and is way simpler.


He said he already figured out how to find the prime factors ...
frogmelter
Profile Blog Joined April 2009
United States971 Posts
August 31 2012 03:56 GMT
#3212
On August 30 2012 17:48 spudde123 wrote:
I didn't spend too much time thinking whether the following is the best way of producing all the possible products but at least consider it food for thought!

Let's say you have a prime factorization, each prime with some exponent. Now consider that you drop the exponents and instead have a list of prime factors and the number of times a prime is in the list is based on the exponent.
So if you have a prime factorization 2^2 * 3^2 * 5^2 * 7^2 consider it as a list 22335577.
Now if you want to list the products of each different subset of this list you can do the following:

Start with an empty list L
For each member N in the list of primes
Multiply each member of L with N and add the new numbers you get to L if they are not already there
add N to L if it is not already there
end

And in the end L will include all the divisors of your original number (other than 1)

Now obviously you don't need to produce this list but instead if you have the primes and their exponents you can just loop for each separate prime from 1 to the exponent to achieve the same goal but I thought this was more illustrative.


I'm not sure this will work without some serious reworking [unless I'm dumb and misunderstood]

Let's say step one you have

2 2 3 3 5 5 7 7

If I start with 2 and multiply everything by it, the result is this [assuming I take it out from the list afterwards]

4 6 6 10 10 14 14

Now it starts to get tricky. 4 can not be multiplied by 2 again since it will yield 8, which is not one of the factors. However, everything else can be multiplied by 2 to get more factors

Basically, in a nutshell, there are certain parts of each list that can not be re-mulitplied. This would require each number to be an object and to store everything that was multiplied to get that number. Not sure if it's the best solution.

On August 31 2012 05:24 waxypants wrote:
Show nested quote +
On August 30 2012 15:51 frogmelter wrote:
On August 29 2012 15:43 Blisse wrote:
On August 29 2012 15:21 frogmelter wrote:
On August 29 2012 14:53 Blisse wrote:
On August 29 2012 14:49 frogmelter wrote:
For an assignment at school, I'm supposed to read in a number and find all the factors and bold the ones that are prime.

This is incredibly simple, except my professor put in

9223372036854775805
9223372036854775806
9223372036854775807

as some of the inputs that we need to test. This obviously takes a super long time to compute. I'm stumped on how I would optimize my code enough so that it would run quickly.

I can think of a clever way to get it to display all the factors, but not to calculate which ones are prime, especially for such a huge number. Can anyone give me some ideas?


That's a very... interesting assignment, at least the way it's worded.

By my gut, if you get the prime factorization, from there you can calculate all unique permutations of those that get you something less than the inputted number, which simply gives you all the factors of the number. Since you have the prime factorization, you should have all the primes you need. In my mind though, that seems like it'll take a very long time, but it might not!


Seems like he just wants you to implement a very good prime factorization method. You'll have to make a call on whether you want to make one yourself or just follow the really optimized ones online.


Calculating all the prime factors is no good, since I need to calculate all the factors as well.

This is what I have so far.

+ Show Spoiler +

public void calcPrime()
{
if (value==2)
{
setPrime(true);
return;
}
if (value%3==0)
{
setPrime(false);
return;
}
if (value%10==5)
{
setPrime(false);
return;
}
if (value%2==0)
{
setPrime(false);
return;
}
if (value==1)
{
setPrime(false);
return;
}
for(long l=3; true; l++)
{
long square = l * l;
if (square > getValue())
{
break;
}
l = getNextTestPrime(l, square);
if (l == -1l)
{
setPrime(false);
return;
}
if(value%l==0)
{
setPrime(false);
return;
}
}
setPrime(true);

}
private Long getNextTestPrime(long l, long square)
{
while (l<square)
{
l=l+2;
if (!(l%3==0||l%5==0))
{
return l;
}
}
return (long) -1;
}


This will only test the numbers that are odd and are not divisible by 3 or end in 5 [the ones that end in 0 are caught by the mod 2 case]

That's about as optimizes as I think I can get. Still no good on the 9 * 10^20 number so far.


Hey, yup, I see what you're going for here, but I think you misunderstood my idea.

I'm not in Computer Science, so I don't remember the proof or theorem by heart, but I took a course on proofs which included prime factorization.

Which stated something like, given N = (f1)^(k1) * (f2)^(k2) * ... * (fn)^(kn), where f1, f2 ... fn are all primes, all possible factors can be determined by choosing different exponents, qm, such that 0 <= qm <= km, for 1 <= m <= n.

I'll give an example since that's not super clear.
+ Show Spoiler +


Given 144 = 2^4 * 3^2 is the prime factorization. 2 and 3 are the ONLY prime factors, since that's what the prime factorization gives you.

From there, you have 2, with exponents from 0 to 4, and 3, with exponents from 0 to 2.

So all the factors are,

2^0 * 3^0 = 1
2^1 * 3^0 = 2
2^2 * 3^0 = 4
2^3 * 3^0 = 8
2^4 * 3^0 = 16
2^0 * 3^1 = 3
2^1 * 3^1 = 6
2^2 * 3^1 = 12
2^3 * 3^1 = 24
2^4 * 3^1 = 48
2^0 * 3^2 = 9
2^1 * 3^2 = 18
2^2 * 3^2 = 36
2^3 * 3^2 = 72
2^4 * 3^2 = 144


Hope that's a bit clearer.

1. Find the prime factorization.
2. Use the above method/theorem to calculate all the permutations, which gives you all the factors.

By breaking the problem into parts, it should be a lot less complicated, no?

I wish I remembered the name of the theorem to make it clearer for you.

Best of luck.


Well, I've written code to find all the prime factors.

So I have a list of something like 2^2 * 3^2 * 5^2 * 7^2

However, I'm stumped on how I would multiply everything to get the actual factors.

For example, the number 44100 is

2^2 * 3^2 * 5^2 * 7^2

I would have to multiply everything by each other

ie.

2^1 * 3^1
2^1 * 3^2
2^1 * 3^1 * 5^1
2^1 * 3^1 * 5^2
2^1 * 3^1 * 7^1
2^1 * 3^1 * 7^2
2^1 * 3^1 * 5^1 * 7^1
2^1 * 3^1 * 5^1 * 7^2
2^2 * 3^1
2^2 * 3^2
2^2 * 3^1 * 5^1
2^2 * 3^1 * 5^2
2^2 * 3^1 * 7^1
2^2 * 3^1 * 7^2
2^2 * 3^1 * 5^1 * 7^1
2^2 * 3^1 * 5^1 * 7^2

I don't know how I would go about that, since there is a variable number of prime factors [If I chose 900, then it would only be 2^2 * 3^2 * 5^2]. If the number of prime factors were constant, it would be really simple

I don't know how I would calculate it so that it multiplies every permutation. Especially since sometimes I would have to skip middle values ie.
2^2 * 3^0 * 5^2 * 7^0 * 11^2

This seems like some sort of recursion that I need to do perhaps... Any ideas are greatly appreciated


Yes it is a recursion. Here is a python solution. I didn't completely test but the results look about right at a glance).


def factors_from_prime_factors(prime_factors):
if not prime_factors:
return []
else:
factors = factors_from_prime_factors(prime_factors[1:])
factors = prime_factors + map(lambda x: x*prime_factors[0], factors)
factors = list(set(factors))
factors.sort()
return factors


The prime factors must be given as a list like [2, 2, 3, 3, 5, 5, 7, 7] in the 44100 case.

>>> factors_from_prime_factors([2, 2, 3, 3, 5, 5, 7, 7])
[2, 3, 4, 5, 6, 7, 10, 12, 14, 20, 28, 36, 60, 84, 180, 252, 900, 1260, 6300, 44100]

edit: sorting can be taken out or done outside the function, same with the conversion to a set (it just removes duplicates), but I just put them in one function for simplicity and to look nice


Hmmm... Looks like you might be missing a few there.

http://www.wolframalpha.com/input/?i=factors of 44100

This tells me that there are 81 divisors for it, including 22050 [exactly half of it] which I don't see on your list

I have an idea for what I need to do. I just gotta code it.

On August 31 2012 05:34 zzdd wrote:
Show nested quote +
On August 30 2012 15:51 frogmelter wrote:
On August 29 2012 15:43 Blisse wrote:
On August 29 2012 15:21 frogmelter wrote:
On August 29 2012 14:53 Blisse wrote:
On August 29 2012 14:49 frogmelter wrote:
For an assignment at school, I'm supposed to read in a number and find all the factors and bold the ones that are prime.

This is incredibly simple, except my professor put in

9223372036854775805
9223372036854775806
9223372036854775807

as some of the inputs that we need to test. This obviously takes a super long time to compute. I'm stumped on how I would optimize my code enough so that it would run quickly.

I can think of a clever way to get it to display all the factors, but not to calculate which ones are prime, especially for such a huge number. Can anyone give me some ideas?


That's a very... interesting assignment, at least the way it's worded.

By my gut, if you get the prime factorization, from there you can calculate all unique permutations of those that get you something less than the inputted number, which simply gives you all the factors of the number. Since you have the prime factorization, you should have all the primes you need. In my mind though, that seems like it'll take a very long time, but it might not!


Seems like he just wants you to implement a very good prime factorization method. You'll have to make a call on whether you want to make one yourself or just follow the really optimized ones online.


Calculating all the prime factors is no good, since I need to calculate all the factors as well.

This is what I have so far.

+ Show Spoiler +

public void calcPrime()
{
if (value==2)
{
setPrime(true);
return;
}
if (value%3==0)
{
setPrime(false);
return;
}
if (value%10==5)
{
setPrime(false);
return;
}
if (value%2==0)
{
setPrime(false);
return;
}
if (value==1)
{
setPrime(false);
return;
}
for(long l=3; true; l++)
{
long square = l * l;
if (square > getValue())
{
break;
}
l = getNextTestPrime(l, square);
if (l == -1l)
{
setPrime(false);
return;
}
if(value%l==0)
{
setPrime(false);
return;
}
}
setPrime(true);

}
private Long getNextTestPrime(long l, long square)
{
while (l<square)
{
l=l+2;
if (!(l%3==0||l%5==0))
{
return l;
}
}
return (long) -1;
}


This will only test the numbers that are odd and are not divisible by 3 or end in 5 [the ones that end in 0 are caught by the mod 2 case]

That's about as optimizes as I think I can get. Still no good on the 9 * 10^20 number so far.


Hey, yup, I see what you're going for here, but I think you misunderstood my idea.

I'm not in Computer Science, so I don't remember the proof or theorem by heart, but I took a course on proofs which included prime factorization.

Which stated something like, given N = (f1)^(k1) * (f2)^(k2) * ... * (fn)^(kn), where f1, f2 ... fn are all primes, all possible factors can be determined by choosing different exponents, qm, such that 0 <= qm <= km, for 1 <= m <= n.

I'll give an example since that's not super clear.
+ Show Spoiler +


Given 144 = 2^4 * 3^2 is the prime factorization. 2 and 3 are the ONLY prime factors, since that's what the prime factorization gives you.

From there, you have 2, with exponents from 0 to 4, and 3, with exponents from 0 to 2.

So all the factors are,

2^0 * 3^0 = 1
2^1 * 3^0 = 2
2^2 * 3^0 = 4
2^3 * 3^0 = 8
2^4 * 3^0 = 16
2^0 * 3^1 = 3
2^1 * 3^1 = 6
2^2 * 3^1 = 12
2^3 * 3^1 = 24
2^4 * 3^1 = 48
2^0 * 3^2 = 9
2^1 * 3^2 = 18
2^2 * 3^2 = 36
2^3 * 3^2 = 72
2^4 * 3^2 = 144


Hope that's a bit clearer.

1. Find the prime factorization.
2. Use the above method/theorem to calculate all the permutations, which gives you all the factors.

By breaking the problem into parts, it should be a lot less complicated, no?

I wish I remembered the name of the theorem to make it clearer for you.

Best of luck.


Well, I've written code to find all the prime factors.

So I have a list of something like 2^2 * 3^2 * 5^2 * 7^2

However, I'm stumped on how I would multiply everything to get the actual factors.

For example, the number 44100 is

2^2 * 3^2 * 5^2 * 7^2

I would have to multiply everything by each other

ie.

2^1 * 3^1
2^1 * 3^2
2^1 * 3^1 * 5^1
2^1 * 3^1 * 5^2
2^1 * 3^1 * 7^1
2^1 * 3^1 * 7^2
2^1 * 3^1 * 5^1 * 7^1
2^1 * 3^1 * 5^1 * 7^2
2^2 * 3^1
2^2 * 3^2
2^2 * 3^1 * 5^1
2^2 * 3^1 * 5^2
2^2 * 3^1 * 7^1
2^2 * 3^1 * 7^2
2^2 * 3^1 * 5^1 * 7^1
2^2 * 3^1 * 5^1 * 7^2

I don't know how I would go about that, since there is a variable number of prime factors [If I chose 900, then it would only be 2^2 * 3^2 * 5^2]. If the number of prime factors were constant, it would be really simple

I don't know how I would calculate it so that it multiplies every permutation. Especially since sometimes I would have to skip middle values ie.
2^2 * 3^0 * 5^2 * 7^0 * 11^2

This seems like some sort of recursion that I need to do perhaps... Any ideas are greatly appreciated

Google Miller Rabin. It will take you maybe an hour to do and is way simpler.


Well, looking at Miller Rabin, it seems to be a test to figure out whether a number is prime or not. My assignment is to find all the factors of a large number and list the ones that are prime. I'm not sure how Miller Rabin would help me there, since I already have all the prime factors.
TL+ Member
cUree
Profile Joined September 2010
Germany50 Posts
August 31 2012 07:55 GMT
#3213
Ahh this first post rly reminds me of myself..


I'm now at the 2nd semester and probably repeat my programming course.. before university I allready programmed languages such as php, actionscript, javascript, json and things like that. But since I learn java in the computer science course I feel really helpless and stupid. I hope it will change if I repeat the course and learn some java in my free time.

Sorry for my bad english
spudde123
Profile Joined February 2012
4814 Posts
Last Edited: 2012-08-31 13:25:37
August 31 2012 10:40 GMT
#3214
@frogmelter

I think I you misunderstood my post (or I was too unclear).

I said that you start with an empty list L.
So you have a list 22335577 which we shall call P.

Step 1. Add 2 to L because L is empty.
Step 2. Multiply 2*2 and add 4 to L, 2 is already there
Step 3. Multiply 2*3 and 4*3 and add 6 and 12 into L, add also 3 into L.
etc.

So as you move in P from left to right in each iteration you multiply all the products of all possible subsets of numbers left from the current position. This way you will get all the factors. (Not saying it is the best or even a good way)

edit:

For illustration here is the necessary code in R to produce the factors of your example. I just quickly tested it using R so I don't have to bother coding checks whether a number is already in the list.


P <- c(2,2,3,3,5,5,7,7)
L <- c(1)
for(i in 1:length(P))
{
tmp <- L*P[i]
L <- c(L,tmp)
L <- unique(L)
}

#Print length of L
length(L)

#Print L
sort(L)



Using this the output is the following:

+ Show Spoiler +

> length(L)
[1] 81

> sort(L)
[1] 1 2 3 4 5 6 7 9 10 12 14 15
[13] 18 20 21 25 28 30 35 36 42 45 49 50
[25] 60 63 70 75 84 90 98 100 105 126 140 147
[37] 150 175 180 196 210 225 245 252 294 300 315 350
[49] 420 441 450 490 525 588 630 700 735 882 900 980
[61] 1050 1225 1260 1470 1575 1764 2100 2205 2450 2940 3150 3675
[73] 4410 4900 6300 7350 8820 11025 14700 22050 44100


SiPa
Profile Joined July 2010
Germany129 Posts
August 31 2012 11:07 GMT
#3215
Hi, I'm trying to use NGen.exe on a simple .exe of mine.
(ngen install simplexe.exe)
But:
After the microsoft-Ads i get
"Uninstalling assembly C:\something\simplexe.exe because of an error during compilation: Failed to load the runtime. (Exception from HRESULT: 0x80....). Failed to load the runtime. (Exception from HRESULT: 0x80...)

All i can find in google is somethign about "assemblies" and "config files".
Can someone try to explain assemblies and config files to me OR can tell me, what's wrong with my .exe-File (or .NET installation, but i doubt that)?
KaiserJohan
Profile Joined May 2010
Sweden1808 Posts
August 31 2012 13:46 GMT
#3216
Awesome programming related picture:

[image loading]
England will fight to the last American
waxypants
Profile Blog Joined September 2009
United States479 Posts
Last Edited: 2012-08-31 18:23:39
August 31 2012 18:23 GMT
#3217
On August 31 2012 12:56 frogmelter wrote:
Show nested quote +
On August 30 2012 17:48 spudde123 wrote:
I didn't spend too much time thinking whether the following is the best way of producing all the possible products but at least consider it food for thought!

Let's say you have a prime factorization, each prime with some exponent. Now consider that you drop the exponents and instead have a list of prime factors and the number of times a prime is in the list is based on the exponent.
So if you have a prime factorization 2^2 * 3^2 * 5^2 * 7^2 consider it as a list 22335577.
Now if you want to list the products of each different subset of this list you can do the following:

Start with an empty list L
For each member N in the list of primes
Multiply each member of L with N and add the new numbers you get to L if they are not already there
add N to L if it is not already there
end

And in the end L will include all the divisors of your original number (other than 1)

Now obviously you don't need to produce this list but instead if you have the primes and their exponents you can just loop for each separate prime from 1 to the exponent to achieve the same goal but I thought this was more illustrative.


I'm not sure this will work without some serious reworking [unless I'm dumb and misunderstood]

Let's say step one you have

2 2 3 3 5 5 7 7

If I start with 2 and multiply everything by it, the result is this [assuming I take it out from the list afterwards]

4 6 6 10 10 14 14

Now it starts to get tricky. 4 can not be multiplied by 2 again since it will yield 8, which is not one of the factors. However, everything else can be multiplied by 2 to get more factors

Basically, in a nutshell, there are certain parts of each list that can not be re-mulitplied. This would require each number to be an object and to store everything that was multiplied to get that number. Not sure if it's the best solution.

Show nested quote +
On August 31 2012 05:24 waxypants wrote:
On August 30 2012 15:51 frogmelter wrote:
On August 29 2012 15:43 Blisse wrote:
On August 29 2012 15:21 frogmelter wrote:
On August 29 2012 14:53 Blisse wrote:
On August 29 2012 14:49 frogmelter wrote:
For an assignment at school, I'm supposed to read in a number and find all the factors and bold the ones that are prime.

This is incredibly simple, except my professor put in

9223372036854775805
9223372036854775806
9223372036854775807

as some of the inputs that we need to test. This obviously takes a super long time to compute. I'm stumped on how I would optimize my code enough so that it would run quickly.

I can think of a clever way to get it to display all the factors, but not to calculate which ones are prime, especially for such a huge number. Can anyone give me some ideas?


That's a very... interesting assignment, at least the way it's worded.

By my gut, if you get the prime factorization, from there you can calculate all unique permutations of those that get you something less than the inputted number, which simply gives you all the factors of the number. Since you have the prime factorization, you should have all the primes you need. In my mind though, that seems like it'll take a very long time, but it might not!


Seems like he just wants you to implement a very good prime factorization method. You'll have to make a call on whether you want to make one yourself or just follow the really optimized ones online.


Calculating all the prime factors is no good, since I need to calculate all the factors as well.

This is what I have so far.

+ Show Spoiler +

public void calcPrime()
{
if (value==2)
{
setPrime(true);
return;
}
if (value%3==0)
{
setPrime(false);
return;
}
if (value%10==5)
{
setPrime(false);
return;
}
if (value%2==0)
{
setPrime(false);
return;
}
if (value==1)
{
setPrime(false);
return;
}
for(long l=3; true; l++)
{
long square = l * l;
if (square > getValue())
{
break;
}
l = getNextTestPrime(l, square);
if (l == -1l)
{
setPrime(false);
return;
}
if(value%l==0)
{
setPrime(false);
return;
}
}
setPrime(true);

}
private Long getNextTestPrime(long l, long square)
{
while (l<square)
{
l=l+2;
if (!(l%3==0||l%5==0))
{
return l;
}
}
return (long) -1;
}


This will only test the numbers that are odd and are not divisible by 3 or end in 5 [the ones that end in 0 are caught by the mod 2 case]

That's about as optimizes as I think I can get. Still no good on the 9 * 10^20 number so far.


Hey, yup, I see what you're going for here, but I think you misunderstood my idea.

I'm not in Computer Science, so I don't remember the proof or theorem by heart, but I took a course on proofs which included prime factorization.

Which stated something like, given N = (f1)^(k1) * (f2)^(k2) * ... * (fn)^(kn), where f1, f2 ... fn are all primes, all possible factors can be determined by choosing different exponents, qm, such that 0 <= qm <= km, for 1 <= m <= n.

I'll give an example since that's not super clear.
+ Show Spoiler +


Given 144 = 2^4 * 3^2 is the prime factorization. 2 and 3 are the ONLY prime factors, since that's what the prime factorization gives you.

From there, you have 2, with exponents from 0 to 4, and 3, with exponents from 0 to 2.

So all the factors are,

2^0 * 3^0 = 1
2^1 * 3^0 = 2
2^2 * 3^0 = 4
2^3 * 3^0 = 8
2^4 * 3^0 = 16
2^0 * 3^1 = 3
2^1 * 3^1 = 6
2^2 * 3^1 = 12
2^3 * 3^1 = 24
2^4 * 3^1 = 48
2^0 * 3^2 = 9
2^1 * 3^2 = 18
2^2 * 3^2 = 36
2^3 * 3^2 = 72
2^4 * 3^2 = 144


Hope that's a bit clearer.

1. Find the prime factorization.
2. Use the above method/theorem to calculate all the permutations, which gives you all the factors.

By breaking the problem into parts, it should be a lot less complicated, no?

I wish I remembered the name of the theorem to make it clearer for you.

Best of luck.


Well, I've written code to find all the prime factors.

So I have a list of something like 2^2 * 3^2 * 5^2 * 7^2

However, I'm stumped on how I would multiply everything to get the actual factors.

For example, the number 44100 is

2^2 * 3^2 * 5^2 * 7^2

I would have to multiply everything by each other

ie.

2^1 * 3^1
2^1 * 3^2
2^1 * 3^1 * 5^1
2^1 * 3^1 * 5^2
2^1 * 3^1 * 7^1
2^1 * 3^1 * 7^2
2^1 * 3^1 * 5^1 * 7^1
2^1 * 3^1 * 5^1 * 7^2
2^2 * 3^1
2^2 * 3^2
2^2 * 3^1 * 5^1
2^2 * 3^1 * 5^2
2^2 * 3^1 * 7^1
2^2 * 3^1 * 7^2
2^2 * 3^1 * 5^1 * 7^1
2^2 * 3^1 * 5^1 * 7^2

I don't know how I would go about that, since there is a variable number of prime factors [If I chose 900, then it would only be 2^2 * 3^2 * 5^2]. If the number of prime factors were constant, it would be really simple

I don't know how I would calculate it so that it multiplies every permutation. Especially since sometimes I would have to skip middle values ie.
2^2 * 3^0 * 5^2 * 7^0 * 11^2

This seems like some sort of recursion that I need to do perhaps... Any ideas are greatly appreciated


Yes it is a recursion. Here is a python solution. I didn't completely test but the results look about right at a glance).


def factors_from_prime_factors(prime_factors):
if not prime_factors:
return []
else:
factors = factors_from_prime_factors(prime_factors[1:])
factors = prime_factors + map(lambda x: x*prime_factors[0], factors)
factors = list(set(factors))
factors.sort()
return factors


The prime factors must be given as a list like [2, 2, 3, 3, 5, 5, 7, 7] in the 44100 case.

>>> factors_from_prime_factors([2, 2, 3, 3, 5, 5, 7, 7])
[2, 3, 4, 5, 6, 7, 10, 12, 14, 20, 28, 36, 60, 84, 180, 252, 900, 1260, 6300, 44100]

edit: sorting can be taken out or done outside the function, same with the conversion to a set (it just removes duplicates), but I just put them in one function for simplicity and to look nice


Hmmm... Looks like you might be missing a few there.

http://www.wolframalpha.com/input/?i=factors of 44100

This tells me that there are 81 divisors for it, including 22050 [exactly half of it] which I don't see on your list

I have an idea for what I need to do. I just gotta code it.

Show nested quote +
On August 31 2012 05:34 zzdd wrote:
On August 30 2012 15:51 frogmelter wrote:
On August 29 2012 15:43 Blisse wrote:
On August 29 2012 15:21 frogmelter wrote:
On August 29 2012 14:53 Blisse wrote:
On August 29 2012 14:49 frogmelter wrote:
For an assignment at school, I'm supposed to read in a number and find all the factors and bold the ones that are prime.

This is incredibly simple, except my professor put in

9223372036854775805
9223372036854775806
9223372036854775807

as some of the inputs that we need to test. This obviously takes a super long time to compute. I'm stumped on how I would optimize my code enough so that it would run quickly.

I can think of a clever way to get it to display all the factors, but not to calculate which ones are prime, especially for such a huge number. Can anyone give me some ideas?


That's a very... interesting assignment, at least the way it's worded.

By my gut, if you get the prime factorization, from there you can calculate all unique permutations of those that get you something less than the inputted number, which simply gives you all the factors of the number. Since you have the prime factorization, you should have all the primes you need. In my mind though, that seems like it'll take a very long time, but it might not!


Seems like he just wants you to implement a very good prime factorization method. You'll have to make a call on whether you want to make one yourself or just follow the really optimized ones online.


Calculating all the prime factors is no good, since I need to calculate all the factors as well.

This is what I have so far.

+ Show Spoiler +

public void calcPrime()
{
if (value==2)
{
setPrime(true);
return;
}
if (value%3==0)
{
setPrime(false);
return;
}
if (value%10==5)
{
setPrime(false);
return;
}
if (value%2==0)
{
setPrime(false);
return;
}
if (value==1)
{
setPrime(false);
return;
}
for(long l=3; true; l++)
{
long square = l * l;
if (square > getValue())
{
break;
}
l = getNextTestPrime(l, square);
if (l == -1l)
{
setPrime(false);
return;
}
if(value%l==0)
{
setPrime(false);
return;
}
}
setPrime(true);

}
private Long getNextTestPrime(long l, long square)
{
while (l<square)
{
l=l+2;
if (!(l%3==0||l%5==0))
{
return l;
}
}
return (long) -1;
}


This will only test the numbers that are odd and are not divisible by 3 or end in 5 [the ones that end in 0 are caught by the mod 2 case]

That's about as optimizes as I think I can get. Still no good on the 9 * 10^20 number so far.


Hey, yup, I see what you're going for here, but I think you misunderstood my idea.

I'm not in Computer Science, so I don't remember the proof or theorem by heart, but I took a course on proofs which included prime factorization.

Which stated something like, given N = (f1)^(k1) * (f2)^(k2) * ... * (fn)^(kn), where f1, f2 ... fn are all primes, all possible factors can be determined by choosing different exponents, qm, such that 0 <= qm <= km, for 1 <= m <= n.

I'll give an example since that's not super clear.
+ Show Spoiler +


Given 144 = 2^4 * 3^2 is the prime factorization. 2 and 3 are the ONLY prime factors, since that's what the prime factorization gives you.

From there, you have 2, with exponents from 0 to 4, and 3, with exponents from 0 to 2.

So all the factors are,

2^0 * 3^0 = 1
2^1 * 3^0 = 2
2^2 * 3^0 = 4
2^3 * 3^0 = 8
2^4 * 3^0 = 16
2^0 * 3^1 = 3
2^1 * 3^1 = 6
2^2 * 3^1 = 12
2^3 * 3^1 = 24
2^4 * 3^1 = 48
2^0 * 3^2 = 9
2^1 * 3^2 = 18
2^2 * 3^2 = 36
2^3 * 3^2 = 72
2^4 * 3^2 = 144


Hope that's a bit clearer.

1. Find the prime factorization.
2. Use the above method/theorem to calculate all the permutations, which gives you all the factors.

By breaking the problem into parts, it should be a lot less complicated, no?

I wish I remembered the name of the theorem to make it clearer for you.

Best of luck.


Well, I've written code to find all the prime factors.

So I have a list of something like 2^2 * 3^2 * 5^2 * 7^2

However, I'm stumped on how I would multiply everything to get the actual factors.

For example, the number 44100 is

2^2 * 3^2 * 5^2 * 7^2

I would have to multiply everything by each other

ie.

2^1 * 3^1
2^1 * 3^2
2^1 * 3^1 * 5^1
2^1 * 3^1 * 5^2
2^1 * 3^1 * 7^1
2^1 * 3^1 * 7^2
2^1 * 3^1 * 5^1 * 7^1
2^1 * 3^1 * 5^1 * 7^2
2^2 * 3^1
2^2 * 3^2
2^2 * 3^1 * 5^1
2^2 * 3^1 * 5^2
2^2 * 3^1 * 7^1
2^2 * 3^1 * 7^2
2^2 * 3^1 * 5^1 * 7^1
2^2 * 3^1 * 5^1 * 7^2

I don't know how I would go about that, since there is a variable number of prime factors [If I chose 900, then it would only be 2^2 * 3^2 * 5^2]. If the number of prime factors were constant, it would be really simple

I don't know how I would calculate it so that it multiplies every permutation. Especially since sometimes I would have to skip middle values ie.
2^2 * 3^0 * 5^2 * 7^0 * 11^2

This seems like some sort of recursion that I need to do perhaps... Any ideas are greatly appreciated

Google Miller Rabin. It will take you maybe an hour to do and is way simpler.


Well, looking at Miller Rabin, it seems to be a test to figure out whether a number is prime or not. My assignment is to find all the factors of a large number and list the ones that are prime. I'm not sure how Miller Rabin would help me there, since I already have all the prime factors.


You're right, oops. Guess checking for 22050 should have been obvious before I posted it Hmm now I'm going to have to go back and figure out where I went wrong.
waxypants
Profile Blog Joined September 2009
United States479 Posts
August 31 2012 18:48 GMT
#3218
On September 01 2012 03:23 waxypants wrote:
Show nested quote +
On August 31 2012 12:56 frogmelter wrote:
On August 30 2012 17:48 spudde123 wrote:
I didn't spend too much time thinking whether the following is the best way of producing all the possible products but at least consider it food for thought!

Let's say you have a prime factorization, each prime with some exponent. Now consider that you drop the exponents and instead have a list of prime factors and the number of times a prime is in the list is based on the exponent.
So if you have a prime factorization 2^2 * 3^2 * 5^2 * 7^2 consider it as a list 22335577.
Now if you want to list the products of each different subset of this list you can do the following:

Start with an empty list L
For each member N in the list of primes
Multiply each member of L with N and add the new numbers you get to L if they are not already there
add N to L if it is not already there
end

And in the end L will include all the divisors of your original number (other than 1)

Now obviously you don't need to produce this list but instead if you have the primes and their exponents you can just loop for each separate prime from 1 to the exponent to achieve the same goal but I thought this was more illustrative.


I'm not sure this will work without some serious reworking [unless I'm dumb and misunderstood]

Let's say step one you have

2 2 3 3 5 5 7 7

If I start with 2 and multiply everything by it, the result is this [assuming I take it out from the list afterwards]

4 6 6 10 10 14 14

Now it starts to get tricky. 4 can not be multiplied by 2 again since it will yield 8, which is not one of the factors. However, everything else can be multiplied by 2 to get more factors

Basically, in a nutshell, there are certain parts of each list that can not be re-mulitplied. This would require each number to be an object and to store everything that was multiplied to get that number. Not sure if it's the best solution.

On August 31 2012 05:24 waxypants wrote:
On August 30 2012 15:51 frogmelter wrote:
On August 29 2012 15:43 Blisse wrote:
On August 29 2012 15:21 frogmelter wrote:
On August 29 2012 14:53 Blisse wrote:
On August 29 2012 14:49 frogmelter wrote:
For an assignment at school, I'm supposed to read in a number and find all the factors and bold the ones that are prime.

This is incredibly simple, except my professor put in

9223372036854775805
9223372036854775806
9223372036854775807

as some of the inputs that we need to test. This obviously takes a super long time to compute. I'm stumped on how I would optimize my code enough so that it would run quickly.

I can think of a clever way to get it to display all the factors, but not to calculate which ones are prime, especially for such a huge number. Can anyone give me some ideas?


That's a very... interesting assignment, at least the way it's worded.

By my gut, if you get the prime factorization, from there you can calculate all unique permutations of those that get you something less than the inputted number, which simply gives you all the factors of the number. Since you have the prime factorization, you should have all the primes you need. In my mind though, that seems like it'll take a very long time, but it might not!


Seems like he just wants you to implement a very good prime factorization method. You'll have to make a call on whether you want to make one yourself or just follow the really optimized ones online.


Calculating all the prime factors is no good, since I need to calculate all the factors as well.

This is what I have so far.

+ Show Spoiler +

public void calcPrime()
{
if (value==2)
{
setPrime(true);
return;
}
if (value%3==0)
{
setPrime(false);
return;
}
if (value%10==5)
{
setPrime(false);
return;
}
if (value%2==0)
{
setPrime(false);
return;
}
if (value==1)
{
setPrime(false);
return;
}
for(long l=3; true; l++)
{
long square = l * l;
if (square > getValue())
{
break;
}
l = getNextTestPrime(l, square);
if (l == -1l)
{
setPrime(false);
return;
}
if(value%l==0)
{
setPrime(false);
return;
}
}
setPrime(true);

}
private Long getNextTestPrime(long l, long square)
{
while (l<square)
{
l=l+2;
if (!(l%3==0||l%5==0))
{
return l;
}
}
return (long) -1;
}


This will only test the numbers that are odd and are not divisible by 3 or end in 5 [the ones that end in 0 are caught by the mod 2 case]

That's about as optimizes as I think I can get. Still no good on the 9 * 10^20 number so far.


Hey, yup, I see what you're going for here, but I think you misunderstood my idea.

I'm not in Computer Science, so I don't remember the proof or theorem by heart, but I took a course on proofs which included prime factorization.

Which stated something like, given N = (f1)^(k1) * (f2)^(k2) * ... * (fn)^(kn), where f1, f2 ... fn are all primes, all possible factors can be determined by choosing different exponents, qm, such that 0 <= qm <= km, for 1 <= m <= n.

I'll give an example since that's not super clear.
+ Show Spoiler +


Given 144 = 2^4 * 3^2 is the prime factorization. 2 and 3 are the ONLY prime factors, since that's what the prime factorization gives you.

From there, you have 2, with exponents from 0 to 4, and 3, with exponents from 0 to 2.

So all the factors are,

2^0 * 3^0 = 1
2^1 * 3^0 = 2
2^2 * 3^0 = 4
2^3 * 3^0 = 8
2^4 * 3^0 = 16
2^0 * 3^1 = 3
2^1 * 3^1 = 6
2^2 * 3^1 = 12
2^3 * 3^1 = 24
2^4 * 3^1 = 48
2^0 * 3^2 = 9
2^1 * 3^2 = 18
2^2 * 3^2 = 36
2^3 * 3^2 = 72
2^4 * 3^2 = 144


Hope that's a bit clearer.

1. Find the prime factorization.
2. Use the above method/theorem to calculate all the permutations, which gives you all the factors.

By breaking the problem into parts, it should be a lot less complicated, no?

I wish I remembered the name of the theorem to make it clearer for you.

Best of luck.


Well, I've written code to find all the prime factors.

So I have a list of something like 2^2 * 3^2 * 5^2 * 7^2

However, I'm stumped on how I would multiply everything to get the actual factors.

For example, the number 44100 is

2^2 * 3^2 * 5^2 * 7^2

I would have to multiply everything by each other

ie.

2^1 * 3^1
2^1 * 3^2
2^1 * 3^1 * 5^1
2^1 * 3^1 * 5^2
2^1 * 3^1 * 7^1
2^1 * 3^1 * 7^2
2^1 * 3^1 * 5^1 * 7^1
2^1 * 3^1 * 5^1 * 7^2
2^2 * 3^1
2^2 * 3^2
2^2 * 3^1 * 5^1
2^2 * 3^1 * 5^2
2^2 * 3^1 * 7^1
2^2 * 3^1 * 7^2
2^2 * 3^1 * 5^1 * 7^1
2^2 * 3^1 * 5^1 * 7^2

I don't know how I would go about that, since there is a variable number of prime factors [If I chose 900, then it would only be 2^2 * 3^2 * 5^2]. If the number of prime factors were constant, it would be really simple

I don't know how I would calculate it so that it multiplies every permutation. Especially since sometimes I would have to skip middle values ie.
2^2 * 3^0 * 5^2 * 7^0 * 11^2

This seems like some sort of recursion that I need to do perhaps... Any ideas are greatly appreciated


Yes it is a recursion. Here is a python solution. I didn't completely test but the results look about right at a glance).


def factors_from_prime_factors(prime_factors):
if not prime_factors:
return []
else:
factors = factors_from_prime_factors(prime_factors[1:])
factors = prime_factors + map(lambda x: x*prime_factors[0], factors)
factors = list(set(factors))
factors.sort()
return factors


The prime factors must be given as a list like [2, 2, 3, 3, 5, 5, 7, 7] in the 44100 case.

>>> factors_from_prime_factors([2, 2, 3, 3, 5, 5, 7, 7])
[2, 3, 4, 5, 6, 7, 10, 12, 14, 20, 28, 36, 60, 84, 180, 252, 900, 1260, 6300, 44100]

edit: sorting can be taken out or done outside the function, same with the conversion to a set (it just removes duplicates), but I just put them in one function for simplicity and to look nice


Hmmm... Looks like you might be missing a few there.

http://www.wolframalpha.com/input/?i=factors of 44100

This tells me that there are 81 divisors for it, including 22050 [exactly half of it] which I don't see on your list

I have an idea for what I need to do. I just gotta code it.

On August 31 2012 05:34 zzdd wrote:
On August 30 2012 15:51 frogmelter wrote:
On August 29 2012 15:43 Blisse wrote:
On August 29 2012 15:21 frogmelter wrote:
On August 29 2012 14:53 Blisse wrote:
On August 29 2012 14:49 frogmelter wrote:
For an assignment at school, I'm supposed to read in a number and find all the factors and bold the ones that are prime.

This is incredibly simple, except my professor put in

9223372036854775805
9223372036854775806
9223372036854775807

as some of the inputs that we need to test. This obviously takes a super long time to compute. I'm stumped on how I would optimize my code enough so that it would run quickly.

I can think of a clever way to get it to display all the factors, but not to calculate which ones are prime, especially for such a huge number. Can anyone give me some ideas?


That's a very... interesting assignment, at least the way it's worded.

By my gut, if you get the prime factorization, from there you can calculate all unique permutations of those that get you something less than the inputted number, which simply gives you all the factors of the number. Since you have the prime factorization, you should have all the primes you need. In my mind though, that seems like it'll take a very long time, but it might not!


Seems like he just wants you to implement a very good prime factorization method. You'll have to make a call on whether you want to make one yourself or just follow the really optimized ones online.


Calculating all the prime factors is no good, since I need to calculate all the factors as well.

This is what I have so far.

+ Show Spoiler +

public void calcPrime()
{
if (value==2)
{
setPrime(true);
return;
}
if (value%3==0)
{
setPrime(false);
return;
}
if (value%10==5)
{
setPrime(false);
return;
}
if (value%2==0)
{
setPrime(false);
return;
}
if (value==1)
{
setPrime(false);
return;
}
for(long l=3; true; l++)
{
long square = l * l;
if (square > getValue())
{
break;
}
l = getNextTestPrime(l, square);
if (l == -1l)
{
setPrime(false);
return;
}
if(value%l==0)
{
setPrime(false);
return;
}
}
setPrime(true);

}
private Long getNextTestPrime(long l, long square)
{
while (l<square)
{
l=l+2;
if (!(l%3==0||l%5==0))
{
return l;
}
}
return (long) -1;
}


This will only test the numbers that are odd and are not divisible by 3 or end in 5 [the ones that end in 0 are caught by the mod 2 case]

That's about as optimizes as I think I can get. Still no good on the 9 * 10^20 number so far.


Hey, yup, I see what you're going for here, but I think you misunderstood my idea.

I'm not in Computer Science, so I don't remember the proof or theorem by heart, but I took a course on proofs which included prime factorization.

Which stated something like, given N = (f1)^(k1) * (f2)^(k2) * ... * (fn)^(kn), where f1, f2 ... fn are all primes, all possible factors can be determined by choosing different exponents, qm, such that 0 <= qm <= km, for 1 <= m <= n.

I'll give an example since that's not super clear.
+ Show Spoiler +


Given 144 = 2^4 * 3^2 is the prime factorization. 2 and 3 are the ONLY prime factors, since that's what the prime factorization gives you.

From there, you have 2, with exponents from 0 to 4, and 3, with exponents from 0 to 2.

So all the factors are,

2^0 * 3^0 = 1
2^1 * 3^0 = 2
2^2 * 3^0 = 4
2^3 * 3^0 = 8
2^4 * 3^0 = 16
2^0 * 3^1 = 3
2^1 * 3^1 = 6
2^2 * 3^1 = 12
2^3 * 3^1 = 24
2^4 * 3^1 = 48
2^0 * 3^2 = 9
2^1 * 3^2 = 18
2^2 * 3^2 = 36
2^3 * 3^2 = 72
2^4 * 3^2 = 144


Hope that's a bit clearer.

1. Find the prime factorization.
2. Use the above method/theorem to calculate all the permutations, which gives you all the factors.

By breaking the problem into parts, it should be a lot less complicated, no?

I wish I remembered the name of the theorem to make it clearer for you.

Best of luck.


Well, I've written code to find all the prime factors.

So I have a list of something like 2^2 * 3^2 * 5^2 * 7^2

However, I'm stumped on how I would multiply everything to get the actual factors.

For example, the number 44100 is

2^2 * 3^2 * 5^2 * 7^2

I would have to multiply everything by each other

ie.

2^1 * 3^1
2^1 * 3^2
2^1 * 3^1 * 5^1
2^1 * 3^1 * 5^2
2^1 * 3^1 * 7^1
2^1 * 3^1 * 7^2
2^1 * 3^1 * 5^1 * 7^1
2^1 * 3^1 * 5^1 * 7^2
2^2 * 3^1
2^2 * 3^2
2^2 * 3^1 * 5^1
2^2 * 3^1 * 5^2
2^2 * 3^1 * 7^1
2^2 * 3^1 * 7^2
2^2 * 3^1 * 5^1 * 7^1
2^2 * 3^1 * 5^1 * 7^2

I don't know how I would go about that, since there is a variable number of prime factors [If I chose 900, then it would only be 2^2 * 3^2 * 5^2]. If the number of prime factors were constant, it would be really simple

I don't know how I would calculate it so that it multiplies every permutation. Especially since sometimes I would have to skip middle values ie.
2^2 * 3^0 * 5^2 * 7^0 * 11^2

This seems like some sort of recursion that I need to do perhaps... Any ideas are greatly appreciated

Google Miller Rabin. It will take you maybe an hour to do and is way simpler.


Well, looking at Miller Rabin, it seems to be a test to figure out whether a number is prime or not. My assignment is to find all the factors of a large number and list the ones that are prime. I'm not sure how Miller Rabin would help me there, since I already have all the prime factors.


You're right, oops. Guess checking for 22050 should have been obvious before I posted it Hmm now I'm going to have to go back and figure out where I went wrong.


Ahh was missing one little part. Seems ok now. I know you probably don't need this, but just posting for my own satisfaction


def factors_from_prime_factors(prime_factors):
if not prime_factors:
return []
else:
factors = factors_from_prime_factors(prime_factors[1:])
factors = prime_factors + factors + map(lambda x: x*prime_factors[0], factors)
factors = list(set(factors))
factors.sort()
return factors


>>> factors = factors_from_prime_factors([2, 2, 3, 3, 5, 5, 7, 7])
>>> print factors
[2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 21, 25, 28, 30, 35, 36, 42, 45, 49, 50, 60, 63, 70, 75
, 84, 90, 98, 100, 105, 126, 140, 147, 150, 175, 180, 196, 210, 225, 245, 252, 294, 300, 315, 350, 4
20, 441, 450, 490, 525, 588, 630, 700, 735, 882, 900, 980, 1050, 1225, 1260, 1470, 1575, 1764, 2100,
2205, 2450, 2940, 3150, 3675, 4410, 4900, 6300, 7350, 8820, 11025, 14700, 22050, 44100]
>>> len(factors)
80
LukeNukeEm
Profile Joined February 2012
31 Posts
August 31 2012 18:50 GMT
#3219
Hi guys, I have a question regarding multithreading in c++.
Currently I have a number of threads (say 5), and a number of jobs (say 100). Right now, Thread 1 solves jobs 0, 5, 10, ...,
Thread 2 solves jobs 1, 6, 11, ... etc.
However this sucks if the jobs take a different amount of time. What i would like to do is have some sort of simple function/method that the threads can call and get a jobnumber, similar to this:
 int getJobNumber()
{
static unsigned int jobNumber = 0;
return jobNumber++;
}

- only that it has to be safe for multithreaded use. Any pointers to what i should look into? Thanks
waxypants
Profile Blog Joined September 2009
United States479 Posts
Last Edited: 2012-08-31 18:54:10
August 31 2012 18:54 GMT
#3220
On September 01 2012 03:50 LukeNukeEm wrote:
Hi guys, I have a question regarding multithreading in c++.
Currently I have a number of threads (say 5), and a number of jobs (say 100). Right now, Thread 1 solves jobs 0, 5, 10, ...,
Thread 2 solves jobs 1, 6, 11, ... etc.
However this sucks if the jobs take a different amount of time. What i would like to do is have some sort of simple function/method that the threads can call and get a jobnumber, similar to this:
 int getJobNumber()
{
static unsigned int jobNumber = 0;
return jobNumber++;
}

- only that it has to be safe for multithreaded use. Any pointers to what i should look into? Thanks


Use a mutex.
Prev 1 159 160 161 162 163 1032 Next
Please log in or register to reply.
Live Events Refresh
Next event in 27m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
mouzHeroMarine 646
IndyStarCraft 188
Vindicta 32
JuggernautJason32
StarCraft: Brood War
Calm 2276
Shuttle 696
Mini 35
910 29
Movie 17
Dota 2
Gorgc7555
qojqva3928
Counter-Strike
byalli2931
fl0m2765
Heroes of the Storm
Liquid`Hasu384
Other Games
FrodaN6971
Grubby3640
Liquid`RaSZi2699
summit1g2611
B2W.Neo991
crisheroes327
Harstem280
ToD194
ArmadaUGS145
Mew2King17
mouzStarbuck15
Railgan1
Organizations
Other Games
gamesdonequick2600
StarCraft 2
ComeBackTV 1518
Other Games
EGCTV1298
StarCraft 2
angryscii 22
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 18 non-featured ]
StarCraft 2
• HeavenSC 31
• Reevou 3
• Kozan
• Laughngamez YouTube
• sooper7s
• AfreecaTV YouTube
• intothetv
• Migwel
• IndyKCrew
• LaughNgamezSOOP
StarCraft: Brood War
• FirePhoenix14
• STPLYoutube
• ZZZeroYoutube
• BSLYoutube
League of Legends
• Jankos2966
• TFBlade782
Other Games
• imaqtpie2207
• Shiphtur268
Upcoming Events
BSL 21
27m
Bonyth vs Sziky
Mihu vs QiaoGege
Sziky vs XuanXuan
eOnzErG vs QiaoGege
Mihu vs DuGu
Dewalt vs Bonyth
IPSL
27m
Dewalt vs Sziky
Replay Cast
13h 27m
Wardi Open
16h 27m
Monday Night Weeklies
21h 27m
OSC
1d 15h
The PondCast
2 days
OSC
2 days
Big Brain Bouts
4 days
Serral vs TBD
BSL 21
5 days
[ Show More ]
BSL 21
6 days
Liquipedia Results

Completed

Escore Tournament S1: W4
Big Gabe Cup #3
NA Kuram Kup

Ongoing

C-Race Season 1
IPSL Winter 2025-26
BSL 21 Non-Korean Championship
CSL 2025 WINTER (S19)
KCM Race Survival 2026 Season 1
OSC Championship Season 13
Underdog Cup #3
BLAST Bounty Winter Qual
eXTREMESLAND 2025
SL Budapest Major 2025
ESL Impact League Season 8
BLAST Rivals Fall 2025
IEM Chengdu 2025

Upcoming

Escore Tournament S1: W5
Acropolis #4
IPSL Spring 2026
Bellum Gens Elite Stara Zagora 2026
HSC XXVIII
Rongyi Cup S3
Nations Cup 2026
Stake Ranked Episode 1
BLAST Open Spring 2026
ESL Pro League Season 23
ESL Pro League Season 23
PGL Cluj-Napoca 2026
IEM Kraków 2026
BLAST Bounty Winter 2026
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2026 TLnet. All Rights Reserved.