• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 08:55
CEST 14:55
KST 21:55
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
TL.net Map Contest #21: Voting4[ASL20] Ro4 Preview: Descent10Team TLMC #5: Winners Announced!3[ASL20] Ro8 Preview Pt2: Holding On9Maestros of the Game: Live Finals Preview (RO4)5
Community News
Weekly Cups (Oct 6-12): Four star herO65.0.15 Patch Balance Hotfix (2025-10-8)72Weekly Cups (Sept 29-Oct 5): MaxPax triples up3PartinG joins SteamerZone, returns to SC2 competition325.0.15 Balance Patch Notes (Live version)119
StarCraft 2
General
The New Patch Killed Mech! TL.net Map Contest #21: Voting 5.0.15 Patch Balance Hotfix (2025-10-8) Ladder Impersonation (only maybe) Weekly Cups (Oct 6-12): Four star herO
Tourneys
Sparkling Tuna Cup - Weekly Open Tournament Master Swan Open (Global Bronze-Master 2) Tenacious Turtle Tussle WardiTV Mondays SC2's Safe House 2 - October 18 & 19
Strategy
Custom Maps
External Content
Mutation # 495 Rest In Peace Mutation # 494 Unstable Environment Mutation # 493 Quick Killers Mutation # 492 Get Out More
Brood War
General
[ASL20] Ro4 Preview: Descent BW caster Sayle ASL20 General Discussion BW General Discussion BSL Season 21
Tourneys
[ASL20] Semifinal B [ASL20] Semifinal A [Megathread] Daily Proleagues [ASL20] Ro8 Day 4
Strategy
Current Meta BW - ajfirecracker Strategy & Training Siegecraft - a new perspective TvZ Theorycraft - Improving on State of the Art
Other Games
General Games
Stormgate/Frost Giant Megathread Nintendo Switch Thread ZeroSpace Megathread Dawn of War IV Path of Exile
Dota 2
Official 'what is Dota anymore' discussion LiquidDota to reintegrate into TL.net
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
SPIRED by.ASL Mafia {211640} TL Mafia Community Thread
Community
General
Things Aren’t Peaceful in Palestine US Politics Mega-thread Russo-Ukrainian War Thread Men's Fashion Thread Sex and weight loss
Fan Clubs
The herO Fan Club! The Happy Fan Club!
Media & Entertainment
Anime Discussion Thread [Manga] One Piece Movie Discussion!
Sports
2024 - 2026 Football Thread Formula 1 Discussion MLB/Baseball 2023 NBA General Discussion TeamLiquid Health and Fitness Initiative For 2023
World Cup 2022
Tech Support
SC2 Client Relocalization [Change SC2 Language] Linksys AE2500 USB WIFI keeps disconnecting Computer Build, Upgrade & Buying Resource Thread
TL Community
The Automated Ban List Recent Gifted Posts
Blogs
Inbreeding: Why Do We Do It…
Peanutsc
From Tilt to Ragequit:The Ps…
TrAiDoS
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1077 users

I dont understand mod

Blogs > exeexe
Post a Reply
1 2 Next All
exeexe
Profile Blog Joined January 2010
Denmark937 Posts
August 30 2010 01:19 GMT
#1
i dont understand mod. Can someone explain what it is?

mod is so much easier

8 = 2 mod 6.
And it becomes 2^n - 2^n mod 6 = 0
and therefore is divisible by 6


This is from another post where i saw it the first time and im like huh?

So imagine you have any 2 arbitrary numbers x and y and y cant be 0 and you have the following task:
Find out if x is divisable with y, how can you do that using mod?


*
And never forget, its always easier to throw a bomb downstairs than up. - George Orwell
infinitestory
Profile Blog Joined April 2010
United States4053 Posts
Last Edited: 2010-08-30 01:25:11
August 30 2010 01:24 GMT
#2
Two numbers a and b are congruent modulo x, if and only if a-b is a multiple of x. Imagine a number line. Only it's been wrapped into a number circle. In mod 6, you wrap a number circle so that 6 and 0 are in the same place, 7 and 1 are in the same place, etc. The residue of a number modulo x is its remainder when divided by x.
Translator:3
blankspace
Profile Blog Joined June 2010
United States292 Posts
August 30 2010 01:25 GMT
#3
mod is an equivalence relation. a=b mod m is equivalent to (a-b) is divisible by m.
Mod is just a notation but a useful one. To show 8^n congruent to 2^n mod 6 you can use the binomial theorem or subtract and factor.
Hello friends
brian
Profile Blog Joined August 2004
United States9628 Posts
Last Edited: 2010-08-30 01:27:20
August 30 2010 01:26 GMT
#4
lol (at the responses. need to make it simpler imo.)

take a number X
X mod Y is the remainder when x is divided by Y.

32 MOD 5
divide 32 by five
the remainder is 2
32 MOD 5 =2
palanq
Profile Blog Joined December 2004
United States761 Posts
Last Edited: 2010-08-30 01:41:17
August 30 2010 01:39 GMT
#5
right so if

x mod y

equals zero, then x* is divisible by y*

edit: -_-;;
time flies like an arrow; fruit flies like a banana
infinitestory
Profile Blog Joined April 2010
United States4053 Posts
Last Edited: 2010-08-30 01:42:08
August 30 2010 01:40 GMT
#6
EDIT: ok
Translator:3
Axiom0
Profile Joined March 2010
63 Posts
August 30 2010 01:51 GMT
#7
The reason why you don't understand the quoted part is because it's unjustified and skips a lot of steps. If you don't understand what he posted it's because its just sloppy mathematics and not really a fault on your part.

Also mod is technically not an operator like Gene described it as, although it is sometimes used that way. It's really an equivalence relation as blankspace described.

As an answer to your other question. If x = 0 mod y, then y divides x-0 by definition (so y divides x). Using mod doesn't really give you much in that situation.
Xeofreestyler
Profile Blog Joined June 2005
Belgium6772 Posts
August 30 2010 02:02 GMT
#8
for some reason I really like modulo
maybe because it is used in arnold's cat map
http://en.wikipedia.org/wiki/Arnold's_cat_map
Graphics
Emperor_Earth
Profile Blog Joined April 2009
United States824 Posts
August 30 2010 02:04 GMT
#9
% = modulus (mod)

If 10/3 has a remainder of 1, then 10 % 3 = 1.

10 / 3 = 3 R1 :. 10 % 3 = 1
4 / 2 = 2 R0 :. 4 % 2 = 0
6 / 200 = 0 R6 :. 6 % 200 = 6
@Emperor_Earth ------- "Amat Victoria Curam."
infinitestory
Profile Blog Joined April 2010
United States4053 Posts
August 30 2010 02:15 GMT
#10
On August 30 2010 10:51 Axiom0 wrote:
The reason why you don't understand the quoted part is because it's unjustified and skips a lot of steps. If you don't understand what he posted it's because its just sloppy mathematics and not really a fault on your part.

I wouldn't go so far as to call it "unjustified." Proving a = b (mod m) implies a^n = b^n (mod m) is not difficult in any way, although it is true that 8 and 2 are not interchangeable mod 6. x^8 and x^2 are not always congruent mod 6, for example.

On August 30 2010 10:51 Axiom0 wrote:
Also mod is technically not an operator like Gene described it as.

sidenote: modulo (%) is an operator in computer science only.

Translator:3
hypercube
Profile Joined April 2010
Hungary2735 Posts
August 30 2010 02:54 GMT
#11
A lot of the answers use language that is probably confusing to anyone who doesn't already know what mod is.

2 mod 6 just means the remainder of 2 diveded by 6.

i.e
5 mod 3 = 2
7 mod 2 = 1

etc.

Find out if x is divisable with y, how can you do that using mod?


x is divisible by y if x mod y = ?

+ Show Spoiler +
x mod y = 0


The important facts about modulus that it's in some sense "compatible" with addition and multiplication. I.e if you know the values of a mod c and b mod c you also know the values of (a+b) mod c and ab mod c. You don't actually need to know the exact values of a and b just their remainder when divided by c.

Specifically, you just add up (or multiply) the remainders and take their remainder again and you've got the remainder of the sum (or multiple).



"Sending people in rockets to other planets is a waste of money better spent on sending rockets into people on this planet."
exeexe
Profile Blog Joined January 2010
Denmark937 Posts
August 30 2010 06:29 GMT
#12
So what is like

x^2 mod x^(1/2) = x^2 mod sqrt(x) = ?
And never forget, its always easier to throw a bomb downstairs than up. - George Orwell
Severedevil
Profile Blog Joined April 2009
United States4839 Posts
August 30 2010 23:48 GMT
#13
On August 30 2010 15:29 exeexe wrote:
So what is like

x^2 mod x^(1/2) = x^2 mod sqrt(x) = ?

If sqrt(x) is a positive integer, the answer is 0, because x^2 = (sqrt(x))(sqrt(x))(x) which is a multiple of sqrt(x).

However, mod is only an operator if you're programming. If you're doing math, you instead say that "x^2 and 0 are congruent [under] mod sqrt(x)." That way, you can also assert that 31 is congruent to 6 under mod 5, because they both have the same remainder (1) when divided by 5.

The notation is "31 = 6 (mod 5)", except instead of "=", you have a similar sign with three horizontals lines that means "is congruent to" instead of "is equal to".
My strategy is to fork people.
love1another
Profile Blog Joined December 2009
United States1844 Posts
August 30 2010 23:51 GMT
#14
Mods are super useful if you want to map something from space of size n to a space of size m.

The easiest way to do such a one-to-one mapping is just to pick i in n and map it to i%m in the space of size m.
"I'm learning more and more that TL isn't the place to go for advice outside of anything you need in college. It's like you guys just make up your own fantasy world shit and post it as if you've done it." - Chill
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-08-31 00:56:51
August 31 2010 00:43 GMT
#15
In general in mathematics (or more specifically abstract algebra) you can impose additional relations to a given algebraic structure (rings, fields, modules, etc..) by "modding" out by certain sub-spaces (ideals, 0, submodules, subspaces, etc..).

In this case when we "mod n" for an integer n (can actually be n = 0 here) we're imposing the relation the 0 = n on the (ring of) integers and all the other relations that follow by given algebraic structures on them (in this case + and *, so all multiples of n are 0, and this is an equivalence relation).

For another example where this "mod" idea is useful, just consider construction of the complex numbers. We want to enlarge the field of reals to have an element "i" such that i^2 = -1 and it's consistent with all field axioms. One way to do this is direct, but a more slick way is to just consider it as R[x]/(x^2 + 1). Here you're "modding" out the polynomial ring R[x] (R here is the field of reals) by (x^2 + 1), an ideal of R[x] generated by x^2 + 1. The image of element x in R[x]/(x^2 + 1) acts as "i," since we're imposing the condition that x^2 + 1 = 0, or x^2 = -1. Furthermore one can easily check that the natural map R -> R[x]/(x^2 + 1) is injective and is a homomorphism (in fact the kernel is an ideal so it's either 0 or R since R is a field, and clearly it's not all of R, so is 0 ideal) and you can verify that all algebraic structures are well-defined whenever you do this, and that's one value of abstracting concepts.

That's one direction of generalizing "mod" for integers. You can certainly consider it as an operation, but regarding it as an equivalence relation seems to give much more interesting and deep generalizations in mathematics (building idea in abstract algebra!) .

"mod" is an idea in mathematics where you impose certain more structures to get other (hopefully more interesting!) structures.
GrayArea
Profile Blog Joined December 2007
United States872 Posts
August 31 2010 01:26 GMT
#16
What Math is this from? I have taken up to Calculus 2, and I've never seen "mod" before.
Kang Min Fighting!
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-08-31 01:44:41
August 31 2010 01:33 GMT
#17
On August 31 2010 10:26 GrayArea wrote:
What Math is this from? I have taken up to Calculus 2, and I've never seen "mod" before.


You can first get introduced to "mod" stuff for integers in any intro text in *elementary* number theory (as opposed to modern number theory, which uses just about every branch of mathematics including algebraic geometry, algebraic topology (and topology ofc), combinatorics, etc..). The "mod" stuff for general algebraic structures can be found in any intro to abstract algebra texts (such as Dummit & Foote, Lang, Hungerford, etc..).

For the elementary number theory part, there are many good texts that I used when I was in high school (while preparing for IMO, I made to MOSP and did well enough to be in black team but they wouldn't let me progress further because I did not have U.S. Citizenship at the time, much less a green card T_T) such as Ivan & Zuckermann (in fact this is the only intro elementary number theory book I read cover to cover and is said to be the "canonical" choice!)

Here's one of the books that I read cover to cover in high school which inspired me to major in math in college: http://www.amazon.com/Introduction-Theory-Numbers-Ivan-Niven/dp/0471625469/ref=sr_1_1?ie=UTF8&s=books&qid=1283218586&sr=8-1

It also has many excellent problems, some of which were proposed for IMO longlists (back in the days) I believe.

With that said, this is still elementary part of number theory. That is to say, classical 19th century stuff. Nowadays, thanks to Wiles and Taylor (who happens to be my advisor), modern number theory looks more like a fusion of algebraic geometry (with Grothendieck revolution - schemy stuff, for those of you who know what schemes / sheaf cohomology are ^^) and algebraic number theory mixed with galois representations, modular (and more generally automorphic) forms and representations.

If you'd like a little taste of how number theory has developed into in the last 100 years or so, Mazur has written up a nice article titled "Number as Gadfly"

Here's the link (in my dropbox): http://dl.dropbox.com/u/3799589/MazurGadfly.pdf
EtherealDeath
Profile Blog Joined July 2007
United States8366 Posts
August 31 2010 01:51 GMT
#18
We same a = b mod c if for some integer k, a = ck + b. Thus, 7 = 2 mod 5 since 7 = 5*1 + 2.
You can also interpret it as c divides (a-b) implies a = b mod c. Thus 7 = 2 mod 5 since 5 divides (7-2).

Let Zc = {0, 1, 2, ..., n-1}, that is, the set of residues modulo n. In the above example where c = 5, we would have Z5 = {0,1,2,3,4}. <Zc, +, *> is a commutative ring, with addition and multiplication working as you would assume:

(a mod c) + (b mod c) = (a+b) mod c
(a mod c) * (b mod c) = (a*b) mod c

You might wonder if there is a multiplicative inverse, that is, whether for all a in Zc, there exists a b such that (ab) mod c = (ba) mod c = 1 mod c. Yes, a has a multiplicative inverse modulo c if a and c and relatively prime.

A corollary of this is that if we work in Zp where p is prime, then <Zp, +, *> is a field. That is, it has the "multiplicative identity" and "no zero divisor" properties of an integral domain as well as the "multiplicative inverse" property of a field.

And to answer your question,

So imagine you have any 2 arbitrary numbers x and y and y cant be 0 and you have the following task:
Find out if x is divisable with y, how can you do that using mod?


If x = 0 mod y, then y divides x.
mieda
Profile Blog Joined February 2010
United States85 Posts
August 31 2010 02:37 GMT
#19
Yes, the proofs that Zc (in Ethereal's notation) have well-defined + and * as such are easy to prove, for example ab = cd (mod n) if a = c (mod n) and b = d (mod n) follows directly from ab - cd = a(b - d) + d(a - c).

The fact that if a = b (mod n) then a^k = b^k (mod n) is just repeated applications of the above (and in particular 8^n = 2^n (mod 6), which solves the problem that started this all ^^).

Once basic facts are proved (that the operations are well-defined, fermat's little theorem (and more generally lagrange's theorem applied to the multiplicative structure on Zc), gcd stuff, etc.. the "elementary" number theory things) you're in a position to handle questions that are otherwise more difficult to handle without the language and the basic facts of the theory.

I can list a few well-known (hopefully interesting) exercises here where you can try doing them without resorting to aforementioned facts and perhaps you can appreciate how easy they would be once the basic facts of elementary number theory are down:

1) for p odd prime, and 1/1 + 1/2 + ... + 1/(p-1) = a/b for integers with gcd(a,b) = 1, p divides b (in fact p^2 divides b but this requires a slight more work).

2) for any integer m > 0, the sequence 2, 2^2, 2^(2^2), 2^(2^(2^2)), ... defined by a_1 = 2 and a_n = 2^(a_(n-1)) eventually leaves same remainder upon division by m. I think this is actually an old USAMO problem.

3) (p-1)! + 1 is divisible by p for any odd prime p ^^. This is near trivial once you understand the structure of Z/p (integers mod p) as being a field.

4) many more! ^^

blankspace
Profile Blog Joined June 2010
United States292 Posts
August 31 2010 04:25 GMT
#20
1. don't you mean p divides a? 1 + 1/2 + 1/3 + 1/4 = 25/12 for example.
Pair up the sum into pairs 1/x + 1/(p-x) = p/[x(p-x)]. If we group up stuff we get p(x/y) = a/b or
pxb = ay. p cannot divide y because the lcm of (1,2...p-1) does not contain p so p divides a.
Hello friends
1 2 Next All
Please log in or register to reply.
Live Events Refresh
LiuLi Cup
11:00
46
herO vs ClemLIVE!
Creator vs TBD
WardiTV1037
TKL 169
IndyStarCraft 139
Rex115
Liquipedia
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
OGKoka 195
TKL 169
IndyStarCraft 139
Rex 115
ProTech56
LamboSC2 31
StarCraft: Brood War
Calm 7820
Sea 6266
Rain 3400
Horang2 1308
Flash 1190
Zeus 795
actioN 767
Leta 728
Soma 488
BeSt 383
[ Show more ]
Stork 350
Mini 292
Snow 263
Hyun 190
Last 184
ZerO 180
Light 178
EffOrt 160
Mong 123
hero 108
PianO 102
Sharp 92
Larva 73
Barracks 71
ToSsGirL 66
Pusan 61
Rush 61
JYJ60
Mind 44
JulyZerg 41
Killer 38
Movie 32
Backho 26
Icarus 23
Shine 22
Shinee 20
sas.Sziky 20
soO 19
Sacsri 15
Terrorterran 13
scan(afreeca) 13
HiyA 11
Noble 8
Bale 7
Dota 2
qojqva3078
Gorgc1987
Dendi1411
XcaliburYe324
420jenkins285
BananaSlamJamma200
League of Legends
JimRising 405
Counter-Strike
x6flipin419
Other Games
singsing2143
olofmeister908
B2W.Neo568
DeMusliM328
crisheroes287
Pyrionflax286
byalli184
Fuzer 106
Mew2King33
QueenE10
ZerO(Twitch)7
Organizations
Counter-Strike
PGL8402
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 12 non-featured ]
StarCraft 2
• iHatsuTV 4
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
League of Legends
• Jankos2315
Upcoming Events
OSC
10h 5m
Replay Cast
10h 5m
The PondCast
21h 5m
OSC
23h 5m
Wardi Open
1d 22h
CranKy Ducklings
2 days
Safe House 2
3 days
Sparkling Tuna Cup
3 days
Safe House 2
4 days
Liquipedia Results

Completed

Acropolis #4 - TS2
WardiTV TLMC #15
HCC Europe

Ongoing

BSL 21 Points
ASL Season 20
CSL 2025 AUTUMN (S18)
C-Race Season 1
IPSL Winter 2025-26
EC S1
Thunderpick World Champ.
CS Asia Championships 2025
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025

Upcoming

SC4ALL: Brood War
BSL Season 21
BSL 21 Team A
RSL Offline Finals
RSL Revival: Season 3
Stellar Fest
SC4ALL: StarCraft II
eXTREMESLAND 2025
ESL Impact League Season 8
SL Budapest Major 2025
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Disclosure: This page contains affiliate marketing links that support TLnet.

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.