• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 06:23
CEST 12:23
KST 19:23
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
Serral wins EWC 20257Tournament Spotlight: FEL Cracow 20259Power Rank - Esports World Cup 202579RSL Season 1 - Final Week9[ASL19] Finals Recap: Standing Tall15
Community News
[BSL 2025] H2 - Team Wars, Weeklies & SB Ladder1EWC 2025 - Replay Pack1Google Play ASL (Season 20) Announced26BSL Team Wars - Bonyth, Dewalt, Hawk & Sziky teams10Weekly Cups (July 14-20): Final Check-up0
StarCraft 2
General
Serral wins EWC 2025 Power Rank - Esports World Cup 2025 #1: Maru - Greatest Players of All Time TL Team Map Contest #5: Presented by Monster Energy EWC 2025 - Replay Pack
Tourneys
TaeJa vs Creator Bo7 SC Evo Showmatch FEL Cracov 2025 (July 27) - $10,000 live event Esports World Cup 2025 $25,000 Streamerzone StarCraft Pro Series announced $5,000 WardiTV Summer Championship 2025
Strategy
How did i lose this ZvP, whats the proper response
Custom Maps
External Content
Mutation # 484 Magnetic Pull Mutation #239 Bad Weather Mutation # 483 Kill Bot Wars Mutation # 482 Wheel of Misfortune
Brood War
General
Afreeca app available on Samsung smart TV [BSL 2025] H2 - Team Wars, Weeklies & SB Ladder Google Play ASL (Season 20) Announced [Update] ShieldBattery: 2025 Redesign Dewalt's Show Matches in China
Tourneys
[Megathread] Daily Proleagues [BSL20] Non-Korean Championship 4x BSL + 4x China CSL Xiamen International Invitational [CSLPRO] It's CSLAN Season! - Last Chance
Strategy
Does 1 second matter in StarCraft? Simple Questions, Simple Answers [G] Mineral Boosting
Other Games
General Games
Stormgate/Frost Giant Megathread Nintendo Switch Thread Total Annihilation Server - TAForever [MMORPG] Tree of Savior (Successor of Ragnarok) Path of Exile
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
How many questions are in the Publix survey?
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
US Politics Mega-thread UK Politics Mega-thread Russo-Ukrainian War Thread Stop Killing Games - European Citizens Initiative Things Aren’t Peaceful in Palestine
Fan Clubs
INnoVation Fan Club SKT1 Classic Fan Club!
Media & Entertainment
Anime Discussion Thread [\m/] Heavy Metal Thread Movie Discussion! [Manga] One Piece Korean Music Discussion
Sports
2024 - 2025 Football Thread Formula 1 Discussion TeamLiquid Health and Fitness Initiative For 2023 NBA General Discussion
World Cup 2022
Tech Support
Installation of Windows 10 suck at "just a moment" Computer Build, Upgrade & Buying Resource Thread
TL Community
TeamLiquid Team Shirt On Sale The Automated Ban List
Blogs
Ping To Win? Pings And Their…
TrAiDoS
momentary artworks from des…
tankgirl
from making sc maps to makin…
Husyelt
StarCraft improvement
iopq
Socialism Anyone?
GreenHorizons
Eight Anniversary as a TL…
Mizenhauer
Customize Sidebar...

Website Feedback

Closed Threads



Active: 587 users

I dont understand mod

Blogs > exeexe
Post a Reply
Normal
exeexe
Profile Blog Joined January 2010
Denmark937 Posts
August 30 2010 01:19 GMT
#1
i dont understand mod. Can someone explain what it is?

mod is so much easier

8 = 2 mod 6.
And it becomes 2^n - 2^n mod 6 = 0
and therefore is divisible by 6


This is from another post where i saw it the first time and im like huh?

So imagine you have any 2 arbitrary numbers x and y and y cant be 0 and you have the following task:
Find out if x is divisable with y, how can you do that using mod?


*
And never forget, its always easier to throw a bomb downstairs than up. - George Orwell
infinitestory
Profile Blog Joined April 2010
United States4053 Posts
Last Edited: 2010-08-30 01:25:11
August 30 2010 01:24 GMT
#2
Two numbers a and b are congruent modulo x, if and only if a-b is a multiple of x. Imagine a number line. Only it's been wrapped into a number circle. In mod 6, you wrap a number circle so that 6 and 0 are in the same place, 7 and 1 are in the same place, etc. The residue of a number modulo x is its remainder when divided by x.
Translator:3
blankspace
Profile Blog Joined June 2010
United States292 Posts
August 30 2010 01:25 GMT
#3
mod is an equivalence relation. a=b mod m is equivalent to (a-b) is divisible by m.
Mod is just a notation but a useful one. To show 8^n congruent to 2^n mod 6 you can use the binomial theorem or subtract and factor.
Hello friends
brian
Profile Blog Joined August 2004
United States9618 Posts
Last Edited: 2010-08-30 01:27:20
August 30 2010 01:26 GMT
#4
lol (at the responses. need to make it simpler imo.)

take a number X
X mod Y is the remainder when x is divided by Y.

32 MOD 5
divide 32 by five
the remainder is 2
32 MOD 5 =2
palanq
Profile Blog Joined December 2004
United States761 Posts
Last Edited: 2010-08-30 01:41:17
August 30 2010 01:39 GMT
#5
right so if

x mod y

equals zero, then x* is divisible by y*

edit: -_-;;
time flies like an arrow; fruit flies like a banana
infinitestory
Profile Blog Joined April 2010
United States4053 Posts
Last Edited: 2010-08-30 01:42:08
August 30 2010 01:40 GMT
#6
EDIT: ok
Translator:3
Axiom0
Profile Joined March 2010
63 Posts
August 30 2010 01:51 GMT
#7
The reason why you don't understand the quoted part is because it's unjustified and skips a lot of steps. If you don't understand what he posted it's because its just sloppy mathematics and not really a fault on your part.

Also mod is technically not an operator like Gene described it as, although it is sometimes used that way. It's really an equivalence relation as blankspace described.

As an answer to your other question. If x = 0 mod y, then y divides x-0 by definition (so y divides x). Using mod doesn't really give you much in that situation.
Xeofreestyler
Profile Blog Joined June 2005
Belgium6771 Posts
August 30 2010 02:02 GMT
#8
for some reason I really like modulo
maybe because it is used in arnold's cat map
http://en.wikipedia.org/wiki/Arnold's_cat_map
Graphics
Emperor_Earth
Profile Blog Joined April 2009
United States824 Posts
August 30 2010 02:04 GMT
#9
% = modulus (mod)

If 10/3 has a remainder of 1, then 10 % 3 = 1.

10 / 3 = 3 R1 :. 10 % 3 = 1
4 / 2 = 2 R0 :. 4 % 2 = 0
6 / 200 = 0 R6 :. 6 % 200 = 6
@Emperor_Earth ------- "Amat Victoria Curam."
infinitestory
Profile Blog Joined April 2010
United States4053 Posts
August 30 2010 02:15 GMT
#10
On August 30 2010 10:51 Axiom0 wrote:
The reason why you don't understand the quoted part is because it's unjustified and skips a lot of steps. If you don't understand what he posted it's because its just sloppy mathematics and not really a fault on your part.

I wouldn't go so far as to call it "unjustified." Proving a = b (mod m) implies a^n = b^n (mod m) is not difficult in any way, although it is true that 8 and 2 are not interchangeable mod 6. x^8 and x^2 are not always congruent mod 6, for example.

On August 30 2010 10:51 Axiom0 wrote:
Also mod is technically not an operator like Gene described it as.

sidenote: modulo (%) is an operator in computer science only.

Translator:3
hypercube
Profile Joined April 2010
Hungary2735 Posts
August 30 2010 02:54 GMT
#11
A lot of the answers use language that is probably confusing to anyone who doesn't already know what mod is.

2 mod 6 just means the remainder of 2 diveded by 6.

i.e
5 mod 3 = 2
7 mod 2 = 1

etc.

Find out if x is divisable with y, how can you do that using mod?


x is divisible by y if x mod y = ?

+ Show Spoiler +
x mod y = 0


The important facts about modulus that it's in some sense "compatible" with addition and multiplication. I.e if you know the values of a mod c and b mod c you also know the values of (a+b) mod c and ab mod c. You don't actually need to know the exact values of a and b just their remainder when divided by c.

Specifically, you just add up (or multiply) the remainders and take their remainder again and you've got the remainder of the sum (or multiple).



"Sending people in rockets to other planets is a waste of money better spent on sending rockets into people on this planet."
exeexe
Profile Blog Joined January 2010
Denmark937 Posts
August 30 2010 06:29 GMT
#12
So what is like

x^2 mod x^(1/2) = x^2 mod sqrt(x) = ?
And never forget, its always easier to throw a bomb downstairs than up. - George Orwell
Severedevil
Profile Blog Joined April 2009
United States4838 Posts
August 30 2010 23:48 GMT
#13
On August 30 2010 15:29 exeexe wrote:
So what is like

x^2 mod x^(1/2) = x^2 mod sqrt(x) = ?

If sqrt(x) is a positive integer, the answer is 0, because x^2 = (sqrt(x))(sqrt(x))(x) which is a multiple of sqrt(x).

However, mod is only an operator if you're programming. If you're doing math, you instead say that "x^2 and 0 are congruent [under] mod sqrt(x)." That way, you can also assert that 31 is congruent to 6 under mod 5, because they both have the same remainder (1) when divided by 5.

The notation is "31 = 6 (mod 5)", except instead of "=", you have a similar sign with three horizontals lines that means "is congruent to" instead of "is equal to".
My strategy is to fork people.
love1another
Profile Blog Joined December 2009
United States1844 Posts
August 30 2010 23:51 GMT
#14
Mods are super useful if you want to map something from space of size n to a space of size m.

The easiest way to do such a one-to-one mapping is just to pick i in n and map it to i%m in the space of size m.
"I'm learning more and more that TL isn't the place to go for advice outside of anything you need in college. It's like you guys just make up your own fantasy world shit and post it as if you've done it." - Chill
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-08-31 00:56:51
August 31 2010 00:43 GMT
#15
In general in mathematics (or more specifically abstract algebra) you can impose additional relations to a given algebraic structure (rings, fields, modules, etc..) by "modding" out by certain sub-spaces (ideals, 0, submodules, subspaces, etc..).

In this case when we "mod n" for an integer n (can actually be n = 0 here) we're imposing the relation the 0 = n on the (ring of) integers and all the other relations that follow by given algebraic structures on them (in this case + and *, so all multiples of n are 0, and this is an equivalence relation).

For another example where this "mod" idea is useful, just consider construction of the complex numbers. We want to enlarge the field of reals to have an element "i" such that i^2 = -1 and it's consistent with all field axioms. One way to do this is direct, but a more slick way is to just consider it as R[x]/(x^2 + 1). Here you're "modding" out the polynomial ring R[x] (R here is the field of reals) by (x^2 + 1), an ideal of R[x] generated by x^2 + 1. The image of element x in R[x]/(x^2 + 1) acts as "i," since we're imposing the condition that x^2 + 1 = 0, or x^2 = -1. Furthermore one can easily check that the natural map R -> R[x]/(x^2 + 1) is injective and is a homomorphism (in fact the kernel is an ideal so it's either 0 or R since R is a field, and clearly it's not all of R, so is 0 ideal) and you can verify that all algebraic structures are well-defined whenever you do this, and that's one value of abstracting concepts.

That's one direction of generalizing "mod" for integers. You can certainly consider it as an operation, but regarding it as an equivalence relation seems to give much more interesting and deep generalizations in mathematics (building idea in abstract algebra!) .

"mod" is an idea in mathematics where you impose certain more structures to get other (hopefully more interesting!) structures.
GrayArea
Profile Blog Joined December 2007
United States872 Posts
August 31 2010 01:26 GMT
#16
What Math is this from? I have taken up to Calculus 2, and I've never seen "mod" before.
Kang Min Fighting!
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-08-31 01:44:41
August 31 2010 01:33 GMT
#17
On August 31 2010 10:26 GrayArea wrote:
What Math is this from? I have taken up to Calculus 2, and I've never seen "mod" before.


You can first get introduced to "mod" stuff for integers in any intro text in *elementary* number theory (as opposed to modern number theory, which uses just about every branch of mathematics including algebraic geometry, algebraic topology (and topology ofc), combinatorics, etc..). The "mod" stuff for general algebraic structures can be found in any intro to abstract algebra texts (such as Dummit & Foote, Lang, Hungerford, etc..).

For the elementary number theory part, there are many good texts that I used when I was in high school (while preparing for IMO, I made to MOSP and did well enough to be in black team but they wouldn't let me progress further because I did not have U.S. Citizenship at the time, much less a green card T_T) such as Ivan & Zuckermann (in fact this is the only intro elementary number theory book I read cover to cover and is said to be the "canonical" choice!)

Here's one of the books that I read cover to cover in high school which inspired me to major in math in college: http://www.amazon.com/Introduction-Theory-Numbers-Ivan-Niven/dp/0471625469/ref=sr_1_1?ie=UTF8&s=books&qid=1283218586&sr=8-1

It also has many excellent problems, some of which were proposed for IMO longlists (back in the days) I believe.

With that said, this is still elementary part of number theory. That is to say, classical 19th century stuff. Nowadays, thanks to Wiles and Taylor (who happens to be my advisor), modern number theory looks more like a fusion of algebraic geometry (with Grothendieck revolution - schemy stuff, for those of you who know what schemes / sheaf cohomology are ^^) and algebraic number theory mixed with galois representations, modular (and more generally automorphic) forms and representations.

If you'd like a little taste of how number theory has developed into in the last 100 years or so, Mazur has written up a nice article titled "Number as Gadfly"

Here's the link (in my dropbox): http://dl.dropbox.com/u/3799589/MazurGadfly.pdf
EtherealDeath
Profile Blog Joined July 2007
United States8366 Posts
August 31 2010 01:51 GMT
#18
We same a = b mod c if for some integer k, a = ck + b. Thus, 7 = 2 mod 5 since 7 = 5*1 + 2.
You can also interpret it as c divides (a-b) implies a = b mod c. Thus 7 = 2 mod 5 since 5 divides (7-2).

Let Zc = {0, 1, 2, ..., n-1}, that is, the set of residues modulo n. In the above example where c = 5, we would have Z5 = {0,1,2,3,4}. <Zc, +, *> is a commutative ring, with addition and multiplication working as you would assume:

(a mod c) + (b mod c) = (a+b) mod c
(a mod c) * (b mod c) = (a*b) mod c

You might wonder if there is a multiplicative inverse, that is, whether for all a in Zc, there exists a b such that (ab) mod c = (ba) mod c = 1 mod c. Yes, a has a multiplicative inverse modulo c if a and c and relatively prime.

A corollary of this is that if we work in Zp where p is prime, then <Zp, +, *> is a field. That is, it has the "multiplicative identity" and "no zero divisor" properties of an integral domain as well as the "multiplicative inverse" property of a field.

And to answer your question,

So imagine you have any 2 arbitrary numbers x and y and y cant be 0 and you have the following task:
Find out if x is divisable with y, how can you do that using mod?


If x = 0 mod y, then y divides x.
mieda
Profile Blog Joined February 2010
United States85 Posts
August 31 2010 02:37 GMT
#19
Yes, the proofs that Zc (in Ethereal's notation) have well-defined + and * as such are easy to prove, for example ab = cd (mod n) if a = c (mod n) and b = d (mod n) follows directly from ab - cd = a(b - d) + d(a - c).

The fact that if a = b (mod n) then a^k = b^k (mod n) is just repeated applications of the above (and in particular 8^n = 2^n (mod 6), which solves the problem that started this all ^^).

Once basic facts are proved (that the operations are well-defined, fermat's little theorem (and more generally lagrange's theorem applied to the multiplicative structure on Zc), gcd stuff, etc.. the "elementary" number theory things) you're in a position to handle questions that are otherwise more difficult to handle without the language and the basic facts of the theory.

I can list a few well-known (hopefully interesting) exercises here where you can try doing them without resorting to aforementioned facts and perhaps you can appreciate how easy they would be once the basic facts of elementary number theory are down:

1) for p odd prime, and 1/1 + 1/2 + ... + 1/(p-1) = a/b for integers with gcd(a,b) = 1, p divides b (in fact p^2 divides b but this requires a slight more work).

2) for any integer m > 0, the sequence 2, 2^2, 2^(2^2), 2^(2^(2^2)), ... defined by a_1 = 2 and a_n = 2^(a_(n-1)) eventually leaves same remainder upon division by m. I think this is actually an old USAMO problem.

3) (p-1)! + 1 is divisible by p for any odd prime p ^^. This is near trivial once you understand the structure of Z/p (integers mod p) as being a field.

4) many more! ^^

blankspace
Profile Blog Joined June 2010
United States292 Posts
August 31 2010 04:25 GMT
#20
1. don't you mean p divides a? 1 + 1/2 + 1/3 + 1/4 = 25/12 for example.
Pair up the sum into pairs 1/x + 1/(p-x) = p/[x(p-x)]. If we group up stuff we get p(x/y) = a/b or
pxb = ay. p cannot divide y because the lcm of (1,2...p-1) does not contain p so p divides a.
Hello friends
mieda
Profile Blog Joined February 2010
United States85 Posts
Last Edited: 2010-08-31 04:42:56
August 31 2010 04:38 GMT
#21
On August 31 2010 13:25 blankspace wrote:
1. don't you mean p divides a? 1 + 1/2 + 1/3 + 1/4 = 25/12 for example.
Pair up the sum into pairs 1/x + 1/(p-x) = p/[x(p-x)]. If we group up stuff we get p(x/y) = a/b or
pxb = ay. p cannot divide y because the lcm of (1,2...p-1) does not contain p so p divides a.


Yes, i mean p divides a. Thanks for the correction.

Likewise, (in fact) p^2 divides a, but this requires one more easy pairing, which I leave up to the reader ^^
crazeman
Profile Blog Joined July 2010
664 Posts
August 31 2010 07:01 GMT
#22
On August 31 2010 10:26 GrayArea wrote:
What Math is this from? I have taken up to Calculus 2, and I've never seen "mod" before.



Mod also shows up in programming classes. Chances are, if you took one before, you've probably seen it.
Hidden_MotiveS
Profile Blog Joined February 2010
Canada2562 Posts
August 31 2010 12:54 GMT
#23
Oh... computer software. I'm ashamed I didn't see that right away.
GrayArea
Profile Blog Joined December 2007
United States872 Posts
August 31 2010 19:09 GMT
#24
On August 31 2010 10:33 mieda wrote:
Show nested quote +
On August 31 2010 10:26 GrayArea wrote:
What Math is this from? I have taken up to Calculus 2, and I've never seen "mod" before.


You can first get introduced to "mod" stuff for integers in any intro text in *elementary* number theory (as opposed to modern number theory, which uses just about every branch of mathematics including algebraic geometry, algebraic topology (and topology ofc), combinatorics, etc..). The "mod" stuff for general algebraic structures can be found in any intro to abstract algebra texts (such as Dummit & Foote, Lang, Hungerford, etc..).

For the elementary number theory part, there are many good texts that I used when I was in high school (while preparing for IMO, I made to MOSP and did well enough to be in black team but they wouldn't let me progress further because I did not have U.S. Citizenship at the time, much less a green card T_T) such as Ivan & Zuckermann (in fact this is the only intro elementary number theory book I read cover to cover and is said to be the "canonical" choice!)

Here's one of the books that I read cover to cover in high school which inspired me to major in math in college: http://www.amazon.com/Introduction-Theory-Numbers-Ivan-Niven/dp/0471625469/ref=sr_1_1?ie=UTF8&s=books&qid=1283218586&sr=8-1

It also has many excellent problems, some of which were proposed for IMO longlists (back in the days) I believe.

With that said, this is still elementary part of number theory. That is to say, classical 19th century stuff. Nowadays, thanks to Wiles and Taylor (who happens to be my advisor), modern number theory looks more like a fusion of algebraic geometry (with Grothendieck revolution - schemy stuff, for those of you who know what schemes / sheaf cohomology are ^^) and algebraic number theory mixed with galois representations, modular (and more generally automorphic) forms and representations.

If you'd like a little taste of how number theory has developed into in the last 100 years or so, Mazur has written up a nice article titled "Number as Gadfly"

Here's the link (in my dropbox): http://dl.dropbox.com/u/3799589/MazurGadfly.pdf

Thank you for this very detailed post! I haven't done any number theory classes which explain my ignorance on mods. Also, thanks for posting the article. I skimmed through it, but it's way too heavy for me and over my head so I passed it up haha. Anyway, good luck with your studies!
Kang Min Fighting!
exeexe
Profile Blog Joined January 2010
Denmark937 Posts
Last Edited: 2010-08-31 19:32:44
August 31 2010 19:32 GMT
#25
Thank you for all your great replies, and based on your replies i have made my decision. I will continue to use "/" instead of "mod". "/" is just much more useful and gives more useful results.
And never forget, its always easier to throw a bomb downstairs than up. - George Orwell
Normal
Please log in or register to reply.
Live Events Refresh
Next event in 37m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
Nina 247
Harstem 244
StarCraft: Brood War
Bisu 1263
Barracks 1079
Larva 584
Killer 454
actioN 357
Stork 351
Hyun 175
Sharp 156
Soma 150
ToSsGirL 149
[ Show more ]
Mind 123
ZerO 82
soO 60
Dewaltoss 58
Backho 55
Shinee 46
sorry 45
Free 36
sSak 31
scan(afreeca) 23
JulyZerg 21
ajuk12(nOOB) 8
Bale 6
ivOry 2
Dota 2
XaKoH 632
XcaliburYe575
BananaSlamJamma479
Counter-Strike
olofmeister1432
shoxiejesuss678
allub386
x6flipin306
edward23
Other Games
singsing1770
crisheroes298
Happy276
mouzStarbuck206
SortOf140
Lowko57
ZerO(Twitch)15
ceh913
Organizations
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 14 non-featured ]
StarCraft 2
• davetesta61
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• WagamamaTV309
• lizZardDota2183
League of Legends
• HappyZerGling175
Upcoming Events
Wardi Open
37m
Sparkling Tuna Cup
23h 37m
WardiTV European League
1d 5h
Online Event
1d 7h
uThermal 2v2 Circuit
2 days
The PondCast
2 days
Replay Cast
3 days
Korean StarCraft League
4 days
CranKy Ducklings
4 days
Sparkling Tuna Cup
5 days
Liquipedia Results

Completed

BSL 20 Non-Korean Championship
FEL Cracow 2025
Underdog Cup #2

Ongoing

Copa Latinoamericana 4
Jiahua Invitational
BSL 20 Team Wars
CC Div. A S7
IEM Cologne 2025
FISSURE Playground #1
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025
PGL Astana 2025
Asian Champions League '25

Upcoming

BSL 21 Qualifiers
ASL Season 20: Qualifier #1
ASL Season 20: Qualifier #2
ASL Season 20
CSLPRO Chat StarLAN 3
BSL Season 21
RSL Revival: Season 2
Maestros of the Game
SEL Season 2 Championship
WardiTV Summer 2025
uThermal 2v2 Main Event
HCC Europe
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Disclosure: This page contains affiliate marketing links that support TLnet.

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.