• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 09:09
CEST 15:09
KST 22:09
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
[ASL19] Finals Recap: Standing Tall9HomeStory Cup 27 - Info & Preview18Classic wins Code S Season 2 (2025)16Code S RO4 & Finals Preview: herO, Rogue, Classic, GuMiho0TL Team Map Contest #5: Presented by Monster Energy6
Community News
Flash Announces Hiatus From ASL54Weekly Cups (June 23-29): Reynor in world title form?13FEL Cracov 2025 (July 27) - $8000 live event16Esports World Cup 2025 - Final Player Roster16Weekly Cups (June 16-22): Clem strikes back1
StarCraft 2
General
Weekly Cups (June 23-29): Reynor in world title form? The SCII GOAT: A statistical Evaluation PiG Sty Festival #5: Playoffs Preview + Groups Recap The GOAT ranking of GOAT rankings Statistics for vetoed/disliked maps
Tourneys
RSL: Revival, a new crowdfunded tournament series Korean Starcraft League Week 77 Master Swan Open (Global Bronze-Master 2) [GSL 2025] Code S: Season 2 - Semi Finals & Finals $5,100+ SEL Season 2 Championship (SC: Evo)
Strategy
How did i lose this ZvP, whats the proper response Simple Questions Simple Answers
Custom Maps
[UMS] Zillion Zerglings
External Content
Mutation # 480 Moths to the Flame Mutation # 479 Worn Out Welcome Mutation # 478 Instant Karma Mutation # 477 Slow and Steady
Brood War
General
Player “Jedi” cheat on CSL BW General Discussion Flash Announces Hiatus From ASL BGH Auto Balance -> http://bghmmr.eu/ Unit and Spell Similarities
Tourneys
[Megathread] Daily Proleagues [BSL20] Grand Finals - Sunday 20:00 CET Small VOD Thread 2.0 [BSL20] GosuLeague RO16 - Tue & Wed 20:00+CET
Strategy
Simple Questions, Simple Answers I am doing this better than progamers do.
Other Games
General Games
Stormgate/Frost Giant Megathread Nintendo Switch Thread Path of Exile What do you want from future RTS games? Beyond All Reason
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
US Politics Mega-thread Trading/Investing Thread Things Aren’t Peaceful in Palestine Russo-Ukrainian War Thread The Games Industry And ATVI
Fan Clubs
SKT1 Classic Fan Club! Maru Fan Club
Media & Entertainment
Anime Discussion Thread [Manga] One Piece [\m/] Heavy Metal Thread
Sports
Formula 1 Discussion 2024 - 2025 Football Thread NBA General Discussion TeamLiquid Health and Fitness Initiative For 2023 NHL Playoffs 2024
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
Blogs
Culture Clash in Video Games…
TrAiDoS
from making sc maps to makin…
Husyelt
Blog #2
tankgirl
StarCraft improvement
iopq
Trip to the Zoo
micronesia
Customize Sidebar...

Website Feedback

Closed Threads



Active: 663 users

help with algebra :(

Blogs > Mr.Maestro
Post a Reply
1 2 Next All
Mr.Maestro
Profile Blog Joined September 2009
42 Posts
Last Edited: 2009-09-29 17:32:42
September 29 2009 16:17 GMT
#1
Hey guys, I've a small algebraic problem about quantifiers:

I was looking through my hmwk today, and it says i must express: "There is no smallest positive real number" using quantifiers:

so far i got:
(1) ∀x ∃y (x>y)
For any x, there exists a y which is smaller.

(2) ∃x ∀y (x<y)
There exists an x such that for all y, x is smaller than y.

I think the correct quantifier statement is (1). But my friend said i'm wrong...so now I'm slightly confused. Isnt (2) saying that there exists an x thats smaller than ANY y? which means there IS a smallest positive real number right?
Hope you guys can enlighten me =/ I'm confuseddd


Thanks guys, I think I get it now


RaGe
Profile Blog Joined July 2004
Belgium9947 Posts
Last Edited: 2009-09-29 16:21:36
September 29 2009 16:19 GMT
#2
You're right.
And the second sentence says exactly what you think it does.
Moderatorsometimes I get intimidated by the size of my right testicle
Too_MuchZerg
Profile Blog Joined February 2008
Finland2818 Posts
Last Edited: 2009-09-29 16:22:19
September 29 2009 16:21 GMT
#3
Yeah your friend is no match for TL.net wisdom :D

EsX_Raptor
Profile Blog Joined February 2008
United States2801 Posts
Last Edited: 2009-09-29 16:26:51
September 29 2009 16:22 GMT
#4
∀x ∃y (y<x ^ y > 0)
x,y ∈ R

i guess

edit:

(2) ∃x ∀y (x<y)
There exists an x such that for all y, x is smaller than y.

this implies x can be negative too.
RaGe
Profile Blog Joined July 2004
Belgium9947 Posts
September 29 2009 16:44 GMT
#5
On September 30 2009 01:22 EsX_Raptor wrote:
∀x ∃y (y 0)
x,y ∈ R

i guess

edit:

Show nested quote +
(2) ∃x ∀y (xThere exists an x such that for all y, x is smaller than y.

this implies x can be negative too.

...
lol
Moderatorsometimes I get intimidated by the size of my right testicle
caldo149
Profile Blog Joined April 2009
United States469 Posts
September 29 2009 16:54 GMT
#6
the 2nd one almost works...
here's what it should be

!∃x>0 ∈ R ∀y>0 ∈ R (x<y)

translation:
There does not exist a real number x greater than zero such that for all real numbers y greater than zero x is less than y.

Essentally, there's no number that is less than every other number in the set of positive real numbers.
Hellions are my homeboys
RaGe
Profile Blog Joined July 2004
Belgium9947 Posts
September 29 2009 16:57 GMT
#7
Oh wow I didn't notice that it had to be positive LOL sorry
Moderatorsometimes I get intimidated by the size of my right testicle
EsX_Raptor
Profile Blog Joined February 2008
United States2801 Posts
Last Edited: 2009-09-29 18:17:42
September 29 2009 18:11 GMT
#8
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?
citi.zen
Profile Joined April 2009
2509 Posts
September 29 2009 18:45 GMT
#9
I would use R+ to make the notation simpler.
Aut viam inveniam, aut faciam.
Papvin
Profile Joined May 2009
Denmark610 Posts
Last Edited: 2009-09-29 19:02:26
September 29 2009 19:00 GMT
#10
Although some of the answers here are equivalent, I also think Caldo's answer using the "not exist" quintifier would be the direct translation, not just an equivalent statement .

Edit: Just interested, why do you consider it an algebraic problem ? I always think of quantifiers as a part of analasys, maybe cause that was the first time I saw them . Also, they're most commonly used in analasys imo.
"It's criminally negligent to dismiss Rock's contributions to other people's careers", Dukethegold
caldo149
Profile Blog Joined April 2009
United States469 Posts
September 29 2009 20:10 GMT
#11
On September 30 2009 03:11 EsX_Raptor wrote:
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?

I think that your expression would be equally valid if you stated x>0, otherwise i can think of examples that make it false easily. With that quick fix though, our solutions both imply the same things and solve the given problem. I was just a bit more literal with my "translation."

On September 30 2009 04:00 Papvin wrote:
Just interested, why do you consider it an algebraic problem ?

I was wondering this too... I thought algebra was like factoring and equation manipulation and whatnot, not quantifiers and sets so much.
Hellions are my homeboys
Batibot
Profile Blog Joined August 2008
Philippines348 Posts
September 29 2009 20:10 GMT
#12
How do you integrate [ln(x^2 + 1) dx] using IBP?

By IBP, I could get integral (lnx dx), to xlnx - x + C

But, with ln (something something), not just lnx. I can't seem to do it.
Jaedong has to be a Bonjwa. Tired of of rooting for July.
MasterOfChaos
Profile Blog Joined April 2007
Germany2896 Posts
Last Edited: 2009-09-29 20:24:13
September 29 2009 20:23 GMT
#13
∀ x>0 ∃ y>0 : y<x
LiquipediaOne eye to kill. Two eyes to live.
Boblion
Profile Blog Joined May 2007
France8043 Posts
Last Edited: 2009-09-29 21:01:54
September 29 2009 21:01 GMT
#14
Algebra is the reason i quitted maths. No goals and no links with real world made me hate it. Also it seems that all the algebra teachers are either retarded or weirdos.


Sry if i have offended anyone. I wish you good luck and i hope you enjoy it.
fuck all those elitists brb watching streams of elite players.
Mobius
Profile Blog Joined March 2009
Canada1268 Posts
September 29 2009 21:15 GMT
#15
dude whats up with the wierd symbols? -_-
Entusman #51
citi.zen
Profile Joined April 2009
2509 Posts
Last Edited: 2009-09-29 21:30:16
September 29 2009 21:18 GMT
#16
On September 30 2009 06:01 Boblion wrote:
Algebra is the reason i quitted maths. No goals and no links with real world made me hate it.


This may well be true for you. Still, for better or for worse that is not the case for many people. Any technical / quantitative field will use equations and algebra.
Aut viam inveniam, aut faciam.
IMlemon
Profile Blog Joined May 2008
Lithuania296 Posts
September 29 2009 21:25 GMT
#17
On September 30 2009 03:11 EsX_Raptor wrote:
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?


Problem with this, is that it's not a valid formula in mathematical logic. Can you use predicates? If so, something like this would do.

P(x) - number is real
R(x) - number is positive
Q(x,y) - y is smaller than x

F = ∀x∃y (P(x) /\ P(y) /\ R(x) /\ R(y) /\ Q(x,y))

^True if x is positive and real, false otherwise. y must be kept in check too.

If you can't use predicates, im kinda out of ideas how to express it precisely. To state that x ∈ R you'd have to write out all of the real numbers' properties.
My future's so bright, I gotta wear shades.
caldo149
Profile Blog Joined April 2009
United States469 Posts
September 29 2009 21:44 GMT
#18
^ it's generally understood that R is the set of all real numbers, so by stating x∈R we're saying that x is in the set of all real numbers,which implies that x is a real number.
Hellions are my homeboys
BookTwo
Profile Blog Joined May 2009
1985 Posts
September 29 2009 23:14 GMT
#19
and this is why I hate maths
Papvin
Profile Joined May 2009
Denmark610 Posts
September 29 2009 23:31 GMT
#20
+ Show Spoiler +
On September 30 2009 06:25 IMlemon wrote:
Show nested quote +
On September 30 2009 03:11 EsX_Raptor wrote:
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?


Problem with this, is that it's not a valid formula in mathematical logic. Can you use predicates? If so, something like this would do.

P(x) - number is real
R(x) - number is positive
Q(x,y) - y is smaller than x

F = ∀x∃y (P(x) /\ P(y) /\ R(x) /\ R(y) /\ Q(x,y))

^True if x is positive and real, false otherwise. y must be kept in check too.

If you can't use predicates, im kinda out of ideas how to express it precisely. To state that x ∈ R you'd have to write out all of the real numbers' properties.

Instead of your F, setting R+ to the set of real (strictly) positive numbers, wouldn't it suffice to write
F = ∀x∈R+∃y∈R+:y<x?
Or are you speaking of stricly formal mathematical language, where nothing is left to the intuition?
"It's criminally negligent to dismiss Rock's contributions to other people's careers", Dukethegold
1 2 Next All
Please log in or register to reply.
Live Events Refresh
WardiTV European League
12:00
Swiss Groups Day 2
WardiTV1139
TKL 375
Liquipedia
CranKy Ducklings
10:00
Master Swan Open #93
CranKy Ducklings74
LiquipediaDiscussion
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
Hui .477
TKL 375
BRAT_OK 97
MindelVK 43
StarCraft: Brood War
Calm 11780
Horang2 2198
Bisu 1551
Jaedong 1344
Flash 1263
Larva 934
Mini 591
Stork 391
BeSt 367
actioN 339
[ Show more ]
Last 210
Soulkey 205
Hyun 163
hero 135
Mind 100
TY 60
sSak 50
Yoon 50
Mong 38
Icarus 21
Free 17
GoRush 16
HiyA 8
Terrorterran 6
Stormgate
NightEnD22
Dota 2
XcaliburYe555
canceldota219
Counter-Strike
zeus617
Heroes of the Storm
Khaldor285
Other Games
Gorgc3455
singsing2905
B2W.Neo1368
DeMusliM589
Happy370
Fuzer 255
XaKoH 231
Lowko205
SortOf94
Organizations
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 14 non-featured ]
StarCraft 2
• Adnapsc2 14
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• C_a_k_e 4897
• WagamamaTV720
League of Legends
• Nemesis4076
Upcoming Events
FEL
2h 51m
RSL Revival
20h 51m
Clem vs Classic
SHIN vs Cure
FEL
22h 51m
WardiTV European League
22h 51m
BSL: ProLeague
1d 4h
Dewalt vs Bonyth
Replay Cast
2 days
Sparkling Tuna Cup
2 days
WardiTV European League
3 days
The PondCast
3 days
Replay Cast
4 days
[ Show More ]
RSL Revival
4 days
Replay Cast
5 days
RSL Revival
5 days
RSL Revival
6 days
Liquipedia Results

Completed

BSL 2v2 Season 3
HSC XXVII
Heroes 10 EU

Ongoing

JPL Season 2
BSL Season 20
Acropolis #3
KCM Race Survival 2025 Season 2
CSL 17: 2025 SUMMER
Copa Latinoamericana 4
Championship of Russia 2025
RSL Revival: Season 1
Murky Cup #2
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025
PGL Astana 2025
Asian Champions League '25
BLAST Rivals Spring 2025
MESA Nomadic Masters
CCT Season 2 Global Finals
IEM Melbourne 2025

Upcoming

2025 ACS Season 2: Qualifier
CSLPRO Last Chance 2025
2025 ACS Season 2
CSLPRO Chat StarLAN 3
K-Championship
uThermal 2v2 Main Event
SEL Season 2 Championship
FEL Cracov 2025
Esports World Cup 2025
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.