• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EST 23:36
CET 05:36
KST 13:36
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
Behind the Blue - Team Liquid History Book8Clem wins HomeStory Cup 289HomeStory Cup 28 - Info & Preview13Rongyi Cup S3 - Preview & Info5herO wins SC2 All-Star Invitational14
Community News
PIG STY FESTIVAL 7.0! (19 Feb - 1 Mar)9Weekly Cups (Jan 26-Feb 1): herO, Clem, ByuN, Classic win2RSL Season 4 announced for March-April7Weekly Cups (Jan 19-25): Bunny, Trigger, MaxPax win3Weekly Cups (Jan 12-18): herO, MaxPax, Solar win0
StarCraft 2
General
Rongyi Cup S3 - Preview & Info Behind the Blue - Team Liquid History Book Clem wins HomeStory Cup 28 How do you think the 5.0.15 balance patch (Oct 2025) for StarCraft II has affected the game? HomeStory Cup 28 - Info & Preview
Tourneys
PIG STY FESTIVAL 7.0! (19 Feb - 1 Mar) WardiTV Mondays $21,000 Rongyi Cup Season 3 announced (Jan 22-Feb 7) Sparkling Tuna Cup - Weekly Open Tournament $5,000 WardiTV Winter Championship 2026
Strategy
Custom Maps
Map Editor closed ? [A] Starcraft Sound Mod
External Content
Mutation # 512 Overclocked The PondCast: SC2 News & Results Mutation # 511 Temple of Rebirth Mutation # 510 Safety Violation
Brood War
General
BGH Auto Balance -> http://bghmmr.eu/ BW General Discussion Liquipedia.net NEEDS editors for Brood War Can someone share very abbreviated BW cliffnotes? StarCraft player reflex TE scores
Tourneys
[Megathread] Daily Proleagues Escore Tournament StarCraft Season 1 Small VOD Thread 2.0 KCM Race Survival 2026 Season 1
Strategy
Zealot bombing is no longer popular? Simple Questions, Simple Answers Current Meta Soma's 9 hatch build from ASL Game 2
Other Games
General Games
Diablo 2 thread Battle Aces/David Kim RTS Megathread EVE Corporation Nintendo Switch Thread Path of Exile
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
Vanilla Mini Mafia Mafia Game Mode Feedback/Ideas
Community
General
US Politics Mega-thread Russo-Ukrainian War Thread YouTube Thread The Games Industry And ATVI Things Aren’t Peaceful in Palestine
Fan Clubs
The herO Fan Club! The IdrA Fan Club
Media & Entertainment
[Manga] One Piece Anime Discussion Thread
Sports
2024 - 2026 Football Thread
World Cup 2022
Tech Support
TL Community
The Automated Ban List
Blogs
Play, Watch, Drink: Esports …
TrAiDoS
My 2025 Magic: The Gathering…
DARKING
Life Update and thoughts.
FuDDx
How do archons sleep?
8882
StarCraft improvement
iopq
Customize Sidebar...

Website Feedback

Closed Threads



Active: 2605 users

help with algebra :(

Blogs > Mr.Maestro
Post a Reply
Normal
Mr.Maestro
Profile Blog Joined September 2009
42 Posts
Last Edited: 2009-09-29 17:32:42
September 29 2009 16:17 GMT
#1
Hey guys, I've a small algebraic problem about quantifiers:

I was looking through my hmwk today, and it says i must express: "There is no smallest positive real number" using quantifiers:

so far i got:
(1) ∀x ∃y (x>y)
For any x, there exists a y which is smaller.

(2) ∃x ∀y (x<y)
There exists an x such that for all y, x is smaller than y.

I think the correct quantifier statement is (1). But my friend said i'm wrong...so now I'm slightly confused. Isnt (2) saying that there exists an x thats smaller than ANY y? which means there IS a smallest positive real number right?
Hope you guys can enlighten me =/ I'm confuseddd


Thanks guys, I think I get it now


RaGe
Profile Blog Joined July 2004
Belgium9949 Posts
Last Edited: 2009-09-29 16:21:36
September 29 2009 16:19 GMT
#2
You're right.
And the second sentence says exactly what you think it does.
Moderatorsometimes I get intimidated by the size of my right testicle
Too_MuchZerg
Profile Blog Joined February 2008
Finland2818 Posts
Last Edited: 2009-09-29 16:22:19
September 29 2009 16:21 GMT
#3
Yeah your friend is no match for TL.net wisdom :D

EsX_Raptor
Profile Blog Joined February 2008
United States2802 Posts
Last Edited: 2009-09-29 16:26:51
September 29 2009 16:22 GMT
#4
∀x ∃y (y<x ^ y > 0)
x,y ∈ R

i guess

edit:

(2) ∃x ∀y (x<y)
There exists an x such that for all y, x is smaller than y.

this implies x can be negative too.
RaGe
Profile Blog Joined July 2004
Belgium9949 Posts
September 29 2009 16:44 GMT
#5
On September 30 2009 01:22 EsX_Raptor wrote:
∀x ∃y (y 0)
x,y ∈ R

i guess

edit:

Show nested quote +
(2) ∃x ∀y (xThere exists an x such that for all y, x is smaller than y.

this implies x can be negative too.

...
lol
Moderatorsometimes I get intimidated by the size of my right testicle
caldo149
Profile Blog Joined April 2009
United States469 Posts
September 29 2009 16:54 GMT
#6
the 2nd one almost works...
here's what it should be

!∃x>0 ∈ R ∀y>0 ∈ R (x<y)

translation:
There does not exist a real number x greater than zero such that for all real numbers y greater than zero x is less than y.

Essentally, there's no number that is less than every other number in the set of positive real numbers.
Hellions are my homeboys
RaGe
Profile Blog Joined July 2004
Belgium9949 Posts
September 29 2009 16:57 GMT
#7
Oh wow I didn't notice that it had to be positive LOL sorry
Moderatorsometimes I get intimidated by the size of my right testicle
EsX_Raptor
Profile Blog Joined February 2008
United States2802 Posts
Last Edited: 2009-09-29 18:17:42
September 29 2009 18:11 GMT
#8
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?
citi.zen
Profile Joined April 2009
2509 Posts
September 29 2009 18:45 GMT
#9
I would use R+ to make the notation simpler.
Aut viam inveniam, aut faciam.
Papvin
Profile Joined May 2009
Denmark610 Posts
Last Edited: 2009-09-29 19:02:26
September 29 2009 19:00 GMT
#10
Although some of the answers here are equivalent, I also think Caldo's answer using the "not exist" quintifier would be the direct translation, not just an equivalent statement .

Edit: Just interested, why do you consider it an algebraic problem ? I always think of quantifiers as a part of analasys, maybe cause that was the first time I saw them . Also, they're most commonly used in analasys imo.
"It's criminally negligent to dismiss Rock's contributions to other people's careers", Dukethegold
caldo149
Profile Blog Joined April 2009
United States469 Posts
September 29 2009 20:10 GMT
#11
On September 30 2009 03:11 EsX_Raptor wrote:
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?

I think that your expression would be equally valid if you stated x>0, otherwise i can think of examples that make it false easily. With that quick fix though, our solutions both imply the same things and solve the given problem. I was just a bit more literal with my "translation."

On September 30 2009 04:00 Papvin wrote:
Just interested, why do you consider it an algebraic problem ?

I was wondering this too... I thought algebra was like factoring and equation manipulation and whatnot, not quantifiers and sets so much.
Hellions are my homeboys
Batibot
Profile Blog Joined August 2008
Philippines348 Posts
September 29 2009 20:10 GMT
#12
How do you integrate [ln(x^2 + 1) dx] using IBP?

By IBP, I could get integral (lnx dx), to xlnx - x + C

But, with ln (something something), not just lnx. I can't seem to do it.
Jaedong has to be a Bonjwa. Tired of of rooting for July.
MasterOfChaos
Profile Blog Joined April 2007
Germany2896 Posts
Last Edited: 2009-09-29 20:24:13
September 29 2009 20:23 GMT
#13
∀ x>0 ∃ y>0 : y<x
LiquipediaOne eye to kill. Two eyes to live.
Boblion
Profile Blog Joined May 2007
France8043 Posts
Last Edited: 2009-09-29 21:01:54
September 29 2009 21:01 GMT
#14
Algebra is the reason i quitted maths. No goals and no links with real world made me hate it. Also it seems that all the algebra teachers are either retarded or weirdos.


Sry if i have offended anyone. I wish you good luck and i hope you enjoy it.
fuck all those elitists brb watching streams of elite players.
Mobius
Profile Blog Joined March 2009
Canada1268 Posts
September 29 2009 21:15 GMT
#15
dude whats up with the wierd symbols? -_-
Entusman #51
citi.zen
Profile Joined April 2009
2509 Posts
Last Edited: 2009-09-29 21:30:16
September 29 2009 21:18 GMT
#16
On September 30 2009 06:01 Boblion wrote:
Algebra is the reason i quitted maths. No goals and no links with real world made me hate it.


This may well be true for you. Still, for better or for worse that is not the case for many people. Any technical / quantitative field will use equations and algebra.
Aut viam inveniam, aut faciam.
IMlemon
Profile Blog Joined May 2008
Lithuania296 Posts
September 29 2009 21:25 GMT
#17
On September 30 2009 03:11 EsX_Raptor wrote:
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?


Problem with this, is that it's not a valid formula in mathematical logic. Can you use predicates? If so, something like this would do.

P(x) - number is real
R(x) - number is positive
Q(x,y) - y is smaller than x

F = ∀x∃y (P(x) /\ P(y) /\ R(x) /\ R(y) /\ Q(x,y))

^True if x is positive and real, false otherwise. y must be kept in check too.

If you can't use predicates, im kinda out of ideas how to express it precisely. To state that x ∈ R you'd have to write out all of the real numbers' properties.
My future's so bright, I gotta wear shades.
caldo149
Profile Blog Joined April 2009
United States469 Posts
September 29 2009 21:44 GMT
#18
^ it's generally understood that R is the set of all real numbers, so by stating x∈R we're saying that x is in the set of all real numbers,which implies that x is a real number.
Hellions are my homeboys
BookTwo
Profile Blog Joined May 2009
1985 Posts
September 29 2009 23:14 GMT
#19
and this is why I hate maths
Papvin
Profile Joined May 2009
Denmark610 Posts
September 29 2009 23:31 GMT
#20
+ Show Spoiler +
On September 30 2009 06:25 IMlemon wrote:
Show nested quote +
On September 30 2009 03:11 EsX_Raptor wrote:
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?


Problem with this, is that it's not a valid formula in mathematical logic. Can you use predicates? If so, something like this would do.

P(x) - number is real
R(x) - number is positive
Q(x,y) - y is smaller than x

F = ∀x∃y (P(x) /\ P(y) /\ R(x) /\ R(y) /\ Q(x,y))

^True if x is positive and real, false otherwise. y must be kept in check too.

If you can't use predicates, im kinda out of ideas how to express it precisely. To state that x ∈ R you'd have to write out all of the real numbers' properties.

Instead of your F, setting R+ to the set of real (strictly) positive numbers, wouldn't it suffice to write
F = ∀x∈R+∃y∈R+:y<x?
Or are you speaking of stricly formal mathematical language, where nothing is left to the intuition?
"It's criminally negligent to dismiss Rock's contributions to other people's careers", Dukethegold
EsX_Raptor
Profile Blog Joined February 2008
United States2802 Posts
Last Edited: 2009-09-29 23:52:29
September 29 2009 23:50 GMT
#21
On September 30 2009 05:10 caldo149 wrote:
Show nested quote +
On September 30 2009 03:11 EsX_Raptor wrote:
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?

I think that your expression would be equally valid if you stated x>0, otherwise i can think of examples that make it false easily. With that quick fix though, our solutions both imply the same things and solve the given problem. I was just a bit more literal with my "translation."

Oh I see, didn't notice that! Thank you for your response n_n this had me confused for a while haha

edit: for those who say math sucks, you haven't really gotten well into it! It can get pretty fascinating after a while
Dave[9]
Profile Blog Joined October 2003
United States2365 Posts
September 30 2009 01:38 GMT
#22
Ahh can't wait to get to modern algebra..
http://www.teamliquid.net/forum/viewmessage.php?topic_id=104154&currentpage=316#6317
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
September 30 2009 01:47 GMT
#23
you are right.
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
IMlemon
Profile Blog Joined May 2008
Lithuania296 Posts
September 30 2009 07:33 GMT
#24
On September 30 2009 08:31 Papvin wrote:
+ Show Spoiler +
On September 30 2009 06:25 IMlemon wrote:
Show nested quote +
On September 30 2009 03:11 EsX_Raptor wrote:
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?


Problem with this, is that it's not a valid formula in mathematical logic. Can you use predicates? If so, something like this would do.

P(x) - number is real
R(x) - number is positive
Q(x,y) - y is smaller than x

F = ∀x∃y (P(x) /\ P(y) /\ R(x) /\ R(y) /\ Q(x,y))

^True if x is positive and real, false otherwise. y must be kept in check too.

If you can't use predicates, im kinda out of ideas how to express it precisely. To state that x ∈ R you'd have to write out all of the real numbers' properties.

Instead of your F, setting R+ to the set of real (strictly) positive numbers, wouldn't it suffice to write
F = ∀x∈R+∃y∈R+:y<x?
Or are you speaking of stricly formal mathematical language, where nothing is left to the intuition?


I assume OP wanted to get a valid formula. Thingies caldo wrote above aren't legit. If you compare that to equations, it would be the same thing as writing, say " = x(x > 9) , sqrt (3 < y)". While it's obvious what you mean, it's wrong in mathematical (gay) sense.

Math gets stupidly abstract and boring really fast.
My future's so bright, I gotta wear shades.
Normal
Please log in or register to reply.
Live Events Refresh
OSC
00:00
OSC Elite Rising Star #17.5
CranKy Ducklings170
Liquipedia
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
WinterStarcraft179
RuFF_SC2 163
Ketroc 67
StarCraft: Brood War
ZergMaN 85
Leta 83
Shuttle 43
Noble 26
Bale 14
Icarus 10
Dota 2
monkeys_forever399
NeuroSwarm162
febbydoto37
XaKoH 5
League of Legends
JimRising 952
C9.Mang0446
Super Smash Bros
hungrybox1718
Mew2King35
Heroes of the Storm
Khaldor181
Other Games
summit1g16085
ToD202
Organizations
Other Games
gamesdonequick1841
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 15 non-featured ]
StarCraft 2
• practicex 24
• davetesta21
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• RayReign 157
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
League of Legends
• Scarra3409
• Lourlo1186
Upcoming Events
Replay Cast
4h 24m
Wardi Open
7h 24m
Monday Night Weeklies
12h 24m
Replay Cast
19h 24m
Sparkling Tuna Cup
1d 5h
LiuLi Cup
1d 6h
Reynor vs Creator
Maru vs Lambo
PiGosaur Monday
1d 20h
Replay Cast
2 days
LiuLi Cup
2 days
Clem vs Rogue
SHIN vs Cyan
The PondCast
3 days
[ Show More ]
KCM Race Survival
3 days
LiuLi Cup
3 days
Scarlett vs TriGGeR
ByuN vs herO
Replay Cast
3 days
Online Event
4 days
LiuLi Cup
4 days
Serral vs Zoun
Cure vs Classic
RSL Revival
4 days
RSL Revival
5 days
LiuLi Cup
5 days
uThermal 2v2 Circuit
5 days
RSL Revival
5 days
Replay Cast
5 days
Sparkling Tuna Cup
6 days
LiuLi Cup
6 days
Replay Cast
6 days
Liquipedia Results

Completed

CSL 2025 WINTER (S19)
Rongyi Cup S3
Underdog Cup #3

Ongoing

KCM Race Survival 2026 Season 1
Nations Cup 2026
IEM Kraków 2026
BLAST Bounty Winter 2026
BLAST Bounty Winter Qual
eXTREMESLAND 2025
SL Budapest Major 2025
ESL Impact League Season 8

Upcoming

Escore Tournament S1: W8
Acropolis #4
IPSL Spring 2026
HSC XXIX
uThermal 2v2 2026 Main Event
Bellum Gens Elite Stara Zagora 2026
RSL Revival: Season 4
WardiTV Winter 2026
LiuLi Cup: 2025 Grand Finals
CCT Season 3 Global Finals
FISSURE Playground #3
IEM Rio 2026
PGL Bucharest 2026
Stake Ranked Episode 1
BLAST Open Spring 2026
ESL Pro League Season 23
ESL Pro League Season 23
PGL Cluj-Napoca 2026
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2026 TLnet. All Rights Reserved.