• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 08:35
CEST 14:35
KST 21:35
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
Team TLMC #5 - Finalists & Open Tournaments1[ASL20] Ro16 Preview Pt2: Turbulence10Classic Games #3: Rogue vs Serral at BlizzCon9[ASL20] Ro16 Preview Pt1: Ascent10Maestros of the Game: Week 1/Play-in Preview12
Community News
StarCraft II 5.0.15 PTR Patch Notes147BSL 2025 Warsaw LAN + Legends Showmatch2Weekly Cups (Sept 8-14): herO & MaxPax split cups4WardiTV TL Team Map Contest #5 Tournaments1SC4ALL $6,000 Open LAN in Philadelphia8
StarCraft 2
General
StarCraft II 5.0.15 PTR Patch Notes Why Storm Should NOT Be Nerfed – A Core Part of Pr #1: Maru - Greatest Players of All Time Team TLMC #5 - Finalists & Open Tournaments Team Liquid Map Contest #21 - Presented by Monster Energy
Tourneys
RSL: Revival, a new crowdfunded tournament series Stellar Fest KSL Week 80 StarCraft Evolution League (SC Evo Biweekly) SC2's Safe House 2 - October 18 & 19
Strategy
Custom Maps
External Content
Mutation # 491 Night Drive Mutation # 490 Masters of Midnight Mutation # 489 Bannable Offense Mutation # 488 What Goes Around
Brood War
General
Soulkey on ASL S20 ASL20 General Discussion BW General Discussion Diplomacy, Cosmonarchy Edition ASL TICKET LIVE help! :D
Tourneys
[ASL20] Ro16 Group D BSL 2025 Warsaw LAN + Legends Showmatch [ASL20] Ro16 Group C Small VOD Thread 2.0
Strategy
Simple Questions, Simple Answers Muta micro map competition Fighting Spirit mining rates [G] Mineral Boosting
Other Games
General Games
Nintendo Switch Thread Stormgate/Frost Giant Megathread Path of Exile Borderlands 3 General RTS Discussion Thread
Dota 2
Official 'what is Dota anymore' discussion LiquidDota to reintegrate into TL.net
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread
Community
General
US Politics Mega-thread The Big Programming Thread Things Aren’t Peaceful in Palestine Russo-Ukrainian War Thread UK Politics Mega-thread
Fan Clubs
The Happy Fan Club!
Media & Entertainment
Movie Discussion! [Manga] One Piece Anime Discussion Thread
Sports
2024 - 2026 Football Thread Formula 1 Discussion MLB/Baseball 2023
World Cup 2022
Tech Support
Linksys AE2500 USB WIFI keeps disconnecting Computer Build, Upgrade & Buying Resource Thread High temperatures on bridge(s)
TL Community
BarCraft in Tokyo Japan for ASL Season5 Final The Automated Ban List
Blogs
Too Many LANs? Tournament Ov…
TrAiDoS
i'm really bored guys
Peanutsc
I <=> 9
KrillinFromwales
A very expensive lesson on ma…
Garnet
hello world
radishsoup
Lemme tell you a thing o…
JoinTheRain
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1730 users

help with algebra :(

Blogs > Mr.Maestro
Post a Reply
Normal
Mr.Maestro
Profile Blog Joined September 2009
42 Posts
Last Edited: 2009-09-29 17:32:42
September 29 2009 16:17 GMT
#1
Hey guys, I've a small algebraic problem about quantifiers:

I was looking through my hmwk today, and it says i must express: "There is no smallest positive real number" using quantifiers:

so far i got:
(1) ∀x ∃y (x>y)
For any x, there exists a y which is smaller.

(2) ∃x ∀y (x<y)
There exists an x such that for all y, x is smaller than y.

I think the correct quantifier statement is (1). But my friend said i'm wrong...so now I'm slightly confused. Isnt (2) saying that there exists an x thats smaller than ANY y? which means there IS a smallest positive real number right?
Hope you guys can enlighten me =/ I'm confuseddd


Thanks guys, I think I get it now


RaGe
Profile Blog Joined July 2004
Belgium9947 Posts
Last Edited: 2009-09-29 16:21:36
September 29 2009 16:19 GMT
#2
You're right.
And the second sentence says exactly what you think it does.
Moderatorsometimes I get intimidated by the size of my right testicle
Too_MuchZerg
Profile Blog Joined February 2008
Finland2818 Posts
Last Edited: 2009-09-29 16:22:19
September 29 2009 16:21 GMT
#3
Yeah your friend is no match for TL.net wisdom :D

EsX_Raptor
Profile Blog Joined February 2008
United States2801 Posts
Last Edited: 2009-09-29 16:26:51
September 29 2009 16:22 GMT
#4
∀x ∃y (y<x ^ y > 0)
x,y ∈ R

i guess

edit:

(2) ∃x ∀y (x<y)
There exists an x such that for all y, x is smaller than y.

this implies x can be negative too.
RaGe
Profile Blog Joined July 2004
Belgium9947 Posts
September 29 2009 16:44 GMT
#5
On September 30 2009 01:22 EsX_Raptor wrote:
∀x ∃y (y 0)
x,y ∈ R

i guess

edit:

Show nested quote +
(2) ∃x ∀y (xThere exists an x such that for all y, x is smaller than y.

this implies x can be negative too.

...
lol
Moderatorsometimes I get intimidated by the size of my right testicle
caldo149
Profile Blog Joined April 2009
United States469 Posts
September 29 2009 16:54 GMT
#6
the 2nd one almost works...
here's what it should be

!∃x>0 ∈ R ∀y>0 ∈ R (x<y)

translation:
There does not exist a real number x greater than zero such that for all real numbers y greater than zero x is less than y.

Essentally, there's no number that is less than every other number in the set of positive real numbers.
Hellions are my homeboys
RaGe
Profile Blog Joined July 2004
Belgium9947 Posts
September 29 2009 16:57 GMT
#7
Oh wow I didn't notice that it had to be positive LOL sorry
Moderatorsometimes I get intimidated by the size of my right testicle
EsX_Raptor
Profile Blog Joined February 2008
United States2801 Posts
Last Edited: 2009-09-29 18:17:42
September 29 2009 18:11 GMT
#8
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?
citi.zen
Profile Joined April 2009
2509 Posts
September 29 2009 18:45 GMT
#9
I would use R+ to make the notation simpler.
Aut viam inveniam, aut faciam.
Papvin
Profile Joined May 2009
Denmark610 Posts
Last Edited: 2009-09-29 19:02:26
September 29 2009 19:00 GMT
#10
Although some of the answers here are equivalent, I also think Caldo's answer using the "not exist" quintifier would be the direct translation, not just an equivalent statement .

Edit: Just interested, why do you consider it an algebraic problem ? I always think of quantifiers as a part of analasys, maybe cause that was the first time I saw them . Also, they're most commonly used in analasys imo.
"It's criminally negligent to dismiss Rock's contributions to other people's careers", Dukethegold
caldo149
Profile Blog Joined April 2009
United States469 Posts
September 29 2009 20:10 GMT
#11
On September 30 2009 03:11 EsX_Raptor wrote:
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?

I think that your expression would be equally valid if you stated x>0, otherwise i can think of examples that make it false easily. With that quick fix though, our solutions both imply the same things and solve the given problem. I was just a bit more literal with my "translation."

On September 30 2009 04:00 Papvin wrote:
Just interested, why do you consider it an algebraic problem ?

I was wondering this too... I thought algebra was like factoring and equation manipulation and whatnot, not quantifiers and sets so much.
Hellions are my homeboys
Batibot
Profile Blog Joined August 2008
Philippines348 Posts
September 29 2009 20:10 GMT
#12
How do you integrate [ln(x^2 + 1) dx] using IBP?

By IBP, I could get integral (lnx dx), to xlnx - x + C

But, with ln (something something), not just lnx. I can't seem to do it.
Jaedong has to be a Bonjwa. Tired of of rooting for July.
MasterOfChaos
Profile Blog Joined April 2007
Germany2896 Posts
Last Edited: 2009-09-29 20:24:13
September 29 2009 20:23 GMT
#13
∀ x>0 ∃ y>0 : y<x
LiquipediaOne eye to kill. Two eyes to live.
Boblion
Profile Blog Joined May 2007
France8043 Posts
Last Edited: 2009-09-29 21:01:54
September 29 2009 21:01 GMT
#14
Algebra is the reason i quitted maths. No goals and no links with real world made me hate it. Also it seems that all the algebra teachers are either retarded or weirdos.


Sry if i have offended anyone. I wish you good luck and i hope you enjoy it.
fuck all those elitists brb watching streams of elite players.
Mobius
Profile Blog Joined March 2009
Canada1268 Posts
September 29 2009 21:15 GMT
#15
dude whats up with the wierd symbols? -_-
Entusman #51
citi.zen
Profile Joined April 2009
2509 Posts
Last Edited: 2009-09-29 21:30:16
September 29 2009 21:18 GMT
#16
On September 30 2009 06:01 Boblion wrote:
Algebra is the reason i quitted maths. No goals and no links with real world made me hate it.


This may well be true for you. Still, for better or for worse that is not the case for many people. Any technical / quantitative field will use equations and algebra.
Aut viam inveniam, aut faciam.
IMlemon
Profile Blog Joined May 2008
Lithuania296 Posts
September 29 2009 21:25 GMT
#17
On September 30 2009 03:11 EsX_Raptor wrote:
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?


Problem with this, is that it's not a valid formula in mathematical logic. Can you use predicates? If so, something like this would do.

P(x) - number is real
R(x) - number is positive
Q(x,y) - y is smaller than x

F = ∀x∃y (P(x) /\ P(y) /\ R(x) /\ R(y) /\ Q(x,y))

^True if x is positive and real, false otherwise. y must be kept in check too.

If you can't use predicates, im kinda out of ideas how to express it precisely. To state that x ∈ R you'd have to write out all of the real numbers' properties.
My future's so bright, I gotta wear shades.
caldo149
Profile Blog Joined April 2009
United States469 Posts
September 29 2009 21:44 GMT
#18
^ it's generally understood that R is the set of all real numbers, so by stating x∈R we're saying that x is in the set of all real numbers,which implies that x is a real number.
Hellions are my homeboys
BookTwo
Profile Blog Joined May 2009
1985 Posts
September 29 2009 23:14 GMT
#19
and this is why I hate maths
Papvin
Profile Joined May 2009
Denmark610 Posts
September 29 2009 23:31 GMT
#20
+ Show Spoiler +
On September 30 2009 06:25 IMlemon wrote:
Show nested quote +
On September 30 2009 03:11 EsX_Raptor wrote:
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?


Problem with this, is that it's not a valid formula in mathematical logic. Can you use predicates? If so, something like this would do.

P(x) - number is real
R(x) - number is positive
Q(x,y) - y is smaller than x

F = ∀x∃y (P(x) /\ P(y) /\ R(x) /\ R(y) /\ Q(x,y))

^True if x is positive and real, false otherwise. y must be kept in check too.

If you can't use predicates, im kinda out of ideas how to express it precisely. To state that x ∈ R you'd have to write out all of the real numbers' properties.

Instead of your F, setting R+ to the set of real (strictly) positive numbers, wouldn't it suffice to write
F = ∀x∈R+∃y∈R+:y<x?
Or are you speaking of stricly formal mathematical language, where nothing is left to the intuition?
"It's criminally negligent to dismiss Rock's contributions to other people's careers", Dukethegold
EsX_Raptor
Profile Blog Joined February 2008
United States2801 Posts
Last Edited: 2009-09-29 23:52:29
September 29 2009 23:50 GMT
#21
On September 30 2009 05:10 caldo149 wrote:
Show nested quote +
On September 30 2009 03:11 EsX_Raptor wrote:
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?

I think that your expression would be equally valid if you stated x>0, otherwise i can think of examples that make it false easily. With that quick fix though, our solutions both imply the same things and solve the given problem. I was just a bit more literal with my "translation."

Oh I see, didn't notice that! Thank you for your response n_n this had me confused for a while haha

edit: for those who say math sucks, you haven't really gotten well into it! It can get pretty fascinating after a while
Dave[9]
Profile Blog Joined October 2003
United States2365 Posts
September 30 2009 01:38 GMT
#22
Ahh can't wait to get to modern algebra..
http://www.teamliquid.net/forum/viewmessage.php?topic_id=104154&currentpage=316#6317
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
September 30 2009 01:47 GMT
#23
you are right.
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
IMlemon
Profile Blog Joined May 2008
Lithuania296 Posts
September 30 2009 07:33 GMT
#24
On September 30 2009 08:31 Papvin wrote:
+ Show Spoiler +
On September 30 2009 06:25 IMlemon wrote:
Show nested quote +
On September 30 2009 03:11 EsX_Raptor wrote:
caldo is right, that's the answer.

edit: you made me think, you clearly state there is no smallest positive real number while i (somewhat) state there is always a smaller number (which also means there is no smallest one). I guess they're somewhat equivalent?

My fixed version should be:

∀x∈R ∃(y>0)∈R (y<x)

Any thoughts?


Problem with this, is that it's not a valid formula in mathematical logic. Can you use predicates? If so, something like this would do.

P(x) - number is real
R(x) - number is positive
Q(x,y) - y is smaller than x

F = ∀x∃y (P(x) /\ P(y) /\ R(x) /\ R(y) /\ Q(x,y))

^True if x is positive and real, false otherwise. y must be kept in check too.

If you can't use predicates, im kinda out of ideas how to express it precisely. To state that x ∈ R you'd have to write out all of the real numbers' properties.

Instead of your F, setting R+ to the set of real (strictly) positive numbers, wouldn't it suffice to write
F = ∀x∈R+∃y∈R+:y<x?
Or are you speaking of stricly formal mathematical language, where nothing is left to the intuition?


I assume OP wanted to get a valid formula. Thingies caldo wrote above aren't legit. If you compare that to equations, it would be the same thing as writing, say " = x(x > 9) , sqrt (3 < y)". While it's obvious what you mean, it's wrong in mathematical (gay) sense.

Math gets stupidly abstract and boring really fast.
My future's so bright, I gotta wear shades.
Normal
Please log in or register to reply.
Live Events Refresh
RSL Revival
10:00
Season 2: Playoffs Day 7
Cure vs ZounLIVE!
Tasteless1415
Crank 1188
IndyStarCraft 212
Rex130
CranKy Ducklings120
3DClanTV 66
IntoTheiNu 26
LiquipediaDiscussion
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
Tasteless 1415
Crank 1188
IndyStarCraft 212
Rex 130
MindelVK 33
Railgan 27
StarCraft: Brood War
Britney 59135
Calm 7485
Rain 2860
Horang2 2232
Flash 1857
GuemChi 1107
EffOrt 960
Larva 519
BeSt 413
actioN 390
[ Show more ]
Hyuk 374
Hyun 281
firebathero 183
Rush 182
Last 176
Zeus 167
Soma 126
Light 116
ZZZero.O 111
Aegong 96
Sharp 72
sSak 72
Soulkey 64
Free 55
ajuk12(nOOB) 52
Mong 47
Nal_rA 45
Movie 44
sas.Sziky 33
soO 30
ivOry 21
Sacsri 20
Icarus 16
Sexy 16
Noble 13
Hm[arnc] 11
Terrorterran 3
Dota 2
Gorgc3303
singsing3199
qojqva1703
Dendi1077
XcaliburYe613
Fuzer 222
Heroes of the Storm
Khaldor196
Other Games
B2W.Neo1230
DeMusliM437
crisheroes389
Lowko186
Hui .171
NeuroSwarm44
mouzStarbuck43
Trikslyr26
Organizations
Other Games
gamesdonequick708
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 15 non-featured ]
StarCraft 2
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• C_a_k_e 387
League of Legends
• Nemesis2074
• Jankos1952
• Stunt527
Other Games
• WagamamaTV236
Upcoming Events
BSL Open LAN 2025 - War…
2h 25m
OSC
8h 25m
BSL Open LAN 2025 - War…
19h 25m
RSL Revival
21h 25m
Classic vs TBD
WardiTV Invitational
22h 25m
Online Event
1d 3h
Wardi Open
1d 22h
Monday Night Weeklies
2 days
Sparkling Tuna Cup
2 days
LiuLi Cup
3 days
[ Show More ]
The PondCast
4 days
CranKy Ducklings
5 days
Liquipedia Results

Completed

Proleague 2025-09-10
Chzzk MurlocKing SC1 vs SC2 Cup #2
HCC Europe

Ongoing

BSL 20 Team Wars
KCM Race Survival 2025 Season 3
BSL 21 Points
ASL Season 20
CSL 2025 AUTUMN (S18)
LASL Season 20
2025 Chongqing Offline CUP
BSL World Championship of Poland 2025
RSL Revival: Season 2
Maestros of the Game
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1

Upcoming

IPSL Winter 2025-26
BSL Season 21
SC4ALL: Brood War
BSL 21 Team A
Stellar Fest
SC4ALL: StarCraft II
EC S1
ESL Impact League Season 8
SL Budapest Major 2025
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025
Thunderpick World Champ.
CS Asia Championships 2025
ESL Pro League S22
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.