• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 13:43
CEST 19:43
KST 02:43
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
[ASL19] Finals Recap: Standing Tall8HomeStory Cup 27 - Info & Preview18Classic wins Code S Season 2 (2025)16Code S RO4 & Finals Preview: herO, Rogue, Classic, GuMiho0TL Team Map Contest #5: Presented by Monster Energy6
Community News
Flash Announces Hiatus From ASL44Weekly Cups (June 23-29): Reynor in world title form?12FEL Cracov 2025 (July 27) - $8000 live event16Esports World Cup 2025 - Final Player Roster16Weekly Cups (June 16-22): Clem strikes back1
StarCraft 2
General
The SCII GOAT: A statistical Evaluation Statistics for vetoed/disliked maps Esports World Cup 2025 - Final Player Roster How does the number of casters affect your enjoyment of esports? Weekly Cups (June 23-29): Reynor in world title form?
Tourneys
RSL: Revival, a new crowdfunded tournament series [GSL 2025] Code S: Season 2 - Semi Finals & Finals $5,100+ SEL Season 2 Championship (SC: Evo) FEL Cracov 2025 (July 27) - $8000 live event HomeStory Cup 27 (June 27-29)
Strategy
How did i lose this ZvP, whats the proper response Simple Questions Simple Answers
Custom Maps
[UMS] Zillion Zerglings
External Content
Mutation # 480 Moths to the Flame Mutation # 479 Worn Out Welcome Mutation # 478 Instant Karma Mutation # 477 Slow and Steady
Brood War
General
BGH Auto Balance -> http://bghmmr.eu/ Player “Jedi” cheat on CSL Help: rep cant save Flash Announces Hiatus From ASL BW General Discussion
Tourneys
[Megathread] Daily Proleagues [BSL20] GosuLeague RO16 - Tue & Wed 20:00+CET The Casual Games of the Week Thread [BSL20] ProLeague LB Final - Saturday 20:00 CET
Strategy
Simple Questions, Simple Answers I am doing this better than progamers do.
Other Games
General Games
Stormgate/Frost Giant Megathread Nintendo Switch Thread Path of Exile What do you want from future RTS games? Beyond All Reason
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
US Politics Mega-thread Russo-Ukrainian War Thread Things Aren’t Peaceful in Palestine Trading/Investing Thread The Games Industry And ATVI
Fan Clubs
SKT1 Classic Fan Club! Maru Fan Club
Media & Entertainment
Anime Discussion Thread [Manga] One Piece [\m/] Heavy Metal Thread
Sports
2024 - 2025 Football Thread NBA General Discussion Formula 1 Discussion TeamLiquid Health and Fitness Initiative For 2023 NHL Playoffs 2024
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
Blogs
Culture Clash in Video Games…
TrAiDoS
from making sc maps to makin…
Husyelt
Blog #2
tankgirl
StarCraft improvement
iopq
Trip to the Zoo
micronesia
Customize Sidebar...

Website Feedback

Closed Threads



Active: 672 users

Thinking Physics Question 3 - Page 2

Blogs > micronesia
Post a Reply
Prev 1 2 3 Next All
micronesia
Profile Blog Joined July 2006
United States24665 Posts
September 28 2008 07:37 GMT
#21
On September 28 2008 16:34 15vs1 wrote:
Maybe it is my bad english but is it possible to ROLL without a friction.

It's fairly typical for the word friction to be used interchangeably in two ways when talking about wheels.

1) The friction between the wheel surface and the ground. As long as this is large enough, the wheel will 'roll without slipping'.

2) The friction acting on the axle etc... provides a negative torque which decreases angular velocity. Does not apply in simplified cases where friction is ignored.

The problem is just saying not to worry about 2.
ModeratorThere are animal crackers for people and there are people crackers for animals.
Klockan3
Profile Blog Joined July 2007
Sweden2866 Posts
Last Edited: 2008-09-28 08:50:03
September 28 2008 08:49 GMT
#22
On September 28 2008 12:43 micronesia wrote:
+ Show Spoiler +
For those who didn't read the introductory entry, head over to http://www.teamliquid.net/blogs/viewblog.php?topic_id=79275

This is entry 3.

Last week the question of the week was:

Question 2
Newton's Laws of Motion

If a can of compressed air is punctured and the escaping air blows to the right, the can will move to the left in a rocket-like fashion. Now consider a vacuum can that is punctured. The air blows in the left as it enters the can. After the vacuum is filled the can will:

a) be moving to the left
b) be moving to the right
c) not be moving


The correct answer is c. First of all, for those who were confused about which way the can was punctured, I agree the wording was a bit tricky... but it didn't matter!

It's very easy to get confused by this problem because there is going to be a momentarily slight oscillation about the center of mass. Just as the can is punctured, the pressure that was being exerted by the atmosphere on the now-absent piece of metal doesn't exist anymore... and the force acting on that surface is weaker than that acting on the opposite side of the can. However, the air rushing into the can will eventually hit the opposite wall, which will provide that force (plus a bit extra until everything equals out). These two drawings I made should clear it up:

[image loading]


[image loading]


I assign this problem a difficulty level of 3 out of 5 because it's easy to confuse the physics principles.

Congratulations to Xeofreestyler for being the first to provide the correct answer and provide a reasonable justification. Dr.Dragoon named the problem.

There were a lot of explanations that were either wrong (even among people who chose C) or not backed up. For example: saying 'C because conservation of momentum' isn't necessarily wrong, but is not sufficient in my opinion. There were a few explanations that I am not sure if they are correct or not... although nobody quite used the one that I provided. Feel free to provide further analysis.


I am sorry but your answer is wrong.

Assuming that all of the air moves at the same speed(Really makes no difference of the answer but makes it easier to reason).

Now there are two phases you have to consider which are constantly interchanging:
Phase 1:
In this phase the air have not reached the far end of the can yet, at this time there is a net force towards the hole since the hole is a net lack of force.
Phase 2:
In this phase the air have reached the far end for the first time, there is no net force except for air resistance which should be negligible in these small time frames. During this phase the amount of air in the bottle is area of hole/area of a bottle side.
Phase 1:
Now the air which hit the far end have came back to the near end again. Since we were at an equilibrium just before this moment we now get an extra force towards the hole direction. Note however that this is smaller than the first phase 1 since we lost a bit of air going out the hole, but at the same time that slows down the filling of the bottle by the same amount and at the end the total work on the bottle is directly proportional to the volume of it and the force never stops until it is completely full.

In the end we will thus receive a net force towards the hole of the bottle as long as the bottle is not full. The bottle will move, case closed.

And just to note, the fact that the air moves faster in one direction than the other and thus creates a force on the bottle as long as it is moving is air resistance, it will not be fast enough to slow it down ever and unless we count other things such as friction it will for sure be moving.
fight_or_flight
Profile Blog Joined June 2007
United States3988 Posts
September 28 2008 09:21 GMT
#23
Klockan, what happens when the particles that you are talking about reach the other side again?
Do you really want chat rooms?
glassmazarin
Profile Blog Joined October 2007
Sweden158 Posts
September 28 2008 09:31 GMT
#24
klockan3, since the can and air starts in rest (relative each other) AND ends up in rest (the air in the can has to have the same velocity as the can itself macroscopically) the can cannot possibly move AFTER the equillibrium has been reached again (i.e no net velocity of the system)
Klockan3
Profile Blog Joined July 2007
Sweden2866 Posts
Last Edited: 2008-09-28 09:32:33
September 28 2008 09:31 GMT
#25
On September 28 2008 18:21 fight_or_flight wrote:
Klockan, what happens when the particles that you are talking about reach the other side again?

Phase 2, aka a new equilibrium of forces, until the stream hits the near end again etc.

Now in reality we would not have phases since the velocity of air is a distribution, however we can look at every velocity in isolation and then add them all up to a constant net force relative to how full the bottle is.

On September 28 2008 18:31 glassmazarin wrote:
klockan3, since the can and air starts in rest (relative each other) AND ends up in rest (the air in the can has to have the same velocity as the can itself macroscopically) the can cannot possibly move AFTER the equillibrium has been reached again (i.e no net velocity of the system)

The air/outside system do not end at rest though, I explained this in my post at the relevant topic.

On September 28 2008 10:25 Klockan3 wrote:
Much wrong use of the laws of Newton in this thread.

If someone finds anything wrong with this please poke it, but for now I believe that most in this thread are wrong:
+ Show Spoiler +
Actually, I am pretty sure that we would have a net force on the can during the fillup process, and once it is full we would have an equilibrium again and there is no way air resistance would stop it in an instant.

This do not break any of newtons laws since when it is absorbing air it will reflect less molecules and thus while it will be moving towards the hole the closed system would start moving in the other direction due to the air pressure getting slightly lower on one end. (Or the average of the gas will be moving in the direction the can is not moving)

The easiest way to picture this is to imagine a square. Remove one of the walls and imagine that its interior gets filled by gas molecules, until the molecules who entered fills the whole square up the air pressure on the other side of it will create a net force and thus speed it up, and the moment it is full it will have a net force of 0 on both sides if we are neglecting the air resistance(And we can do that since air resistance will not slow it to a dead stop in such a limited time interval). The net force on the square gets exactly evened out by the net loss of reflected air from the removal of one of the walls.

If you want an open system just imagine that we have an artificial air around it, all with a speed directed towards the can and only in a volume to have exactly enough air to hit the can untill it has reached the critical point were we stop observing it. In such a system we would get a gas sphere around the can except were the hole is, there we would also get an air hole in the sphere, and that is were the momentum gained by the can is taken from.

In the end, the answer is B: It is moving to the right.

I can not believe that so many missed this...

Also yes even if the hole is extremely small, the fact that there is no air resistance unless the object is moving, and that until the last of the air have moved in there is always a net force working on the can from the higher pressure from the wall wo a hole it got to be moving at the time when equilibrium is reached.


glassmazarin
Profile Blog Joined October 2007
Sweden158 Posts
Last Edited: 2008-09-28 09:45:55
September 28 2008 09:44 GMT
#26
ok, lets say the air molecules moves with speed v_air microscopically.
then as the can starts moving to the right with speed v_can, the air molecules hitting the can on the left outside wall will hit with the relative speed v_can - v_air.

when the air that enters the can starts hitting the left inside wall, the molecules will hit with speed v_can + v_air and create a higher pressure than that on the left outside wall.

the effect is that as long as the can is moving to the right, air will create a force on the can towards the left..
Klockan3
Profile Blog Joined July 2007
Sweden2866 Posts
September 28 2008 10:03 GMT
#27
On September 28 2008 18:44 glassmazarin wrote:
ok, lets say the air molecules moves with speed v_air microscopically.
then as the can starts moving to the right with speed v_can, the air molecules hitting the can on the left outside wall will hit with the relative speed v_can - v_air.

when the air that enters the can starts hitting the left inside wall, the molecules will hit with speed v_can + v_air and create a higher pressure than that on the left outside wall.

the effect is that as long as the can is moving to the right, air will create a force on the can towards the left..

Which is the air resistance, I have already covered that.
glassmazarin
Profile Blog Joined October 2007
Sweden158 Posts
September 28 2008 10:13 GMT
#28
On September 28 2008 18:31 Klockan3 wrote:

The easiest way to picture this is to imagine a square. Remove one of the walls and imagine that its interior gets filled by gas molecules, until the molecules who entered fills the whole square up the air pressure on the other side of it will create a net force and thus speed it up, and the moment it is full it will have a net force of 0 on both sides if we are neglecting the air resistance(And we can do that since air resistance will not slow it to a dead stop in such a limited time interval). The net force on the square gets exactly evened out by the net loss of reflected air from the removal of one of the walls.



i assume this is where you covered air resistance, please correct me if im wrong

"and the moment it is full it will have a net force of 0 on both sides if we are neglecting the air resistance(And we can do that since air resistance will not slow it to a dead stop in such a limited time interval)."

this is wrong imo. as soon as air hits the left inner wall, the air will create a force on the can in the opposite direction of the cans movement, lasting until the can has stopped.
Klockan3
Profile Blog Joined July 2007
Sweden2866 Posts
Last Edited: 2008-09-28 10:27:02
September 28 2008 10:22 GMT
#29
On September 28 2008 19:13 glassmazarin wrote:
this is wrong imo. as soon as air hits the left inner wall, the air will create a force on the can in the opposite direction of the cans movement, lasting until the can has stopped.

I covered air resistance in more than one place, anyhow:

The can gets a force trying to slow it down by air resistance as long as it moves, this force is proportional to the square of the velocity.
As long as the can is filling it will get a force trying to speed it up.

Now the force of air resistance is proportional to the movement speed of the object, as such even if it took 100 million years to fill the bottle and as such the air resistance got almost infinite time to equalize with the accelerating force, the fact that there is a force until the very end of the process to fill it means that air resistance would need to slow it down to a stop in 0 time or it will be moving at the exact moment it gets full.

And that is just the extreme case of air resistance > all, normally air resistance would not have much of a say the 1/10 of a second the can is filling up.

But you are right though that the whole system converges against everything being at a relative rest, but that were not the question.
glassmazarin
Profile Blog Joined October 2007
Sweden158 Posts
Last Edited: 2008-09-28 10:56:03
September 28 2008 10:26 GMT
#30
aha.. i was assuming that the "full" condition = everything is in equillibrium again, but just as the can gets filled with the last air molecule, it will move to the right.

seems that you have the right answer there : )

EDIT: Crap, im wasting too much time on this right now >.<

If one would define the hole as being "small enough" (i.e infinitesimal) we can argue that the molecules enter the can one by one.

when the last molecule enters (filling the can) the can will be moving to the right, but as soon as the molecule has hit the opposite wall, the can will stop.

air molecules moves with speeds ~500 m/s, i.e the time between "filling" and "stopping" will be of order ~1/10000 s for a can 5 cm wide in this case. compared to the time it takes to fill the can from scratch this can be argued to be negligable and thus the can stops "at the same time" as the can is filled.

however the question did not say anything about the size of the hole, so the correct answer would still be B, but i believe this is what the question was supposed to say
MasterOfChaos
Profile Blog Joined April 2007
Germany2896 Posts
September 28 2008 14:42 GMT
#31
Assume: the car moves horizontally.
Assume: The rain which is currently in the car counts as part of the car. If that assumption is wrong please clearify the task.
+ Show Spoiler +
1b
2c
3b
4c
5b
6b
Reason for 2:
the impact of the rain can be regarded a inelastic impact. The (horizontal component of) the momentum of the rain is 0. Conservation of momentum applies to inelastic impact.
for 1: v=p/m p2=p1, m2>m1 =>v2<v1
for 3: E=0.5*p^2/, p2=p1, m2>m1 =>E2<E1
Reason for 4:
In the moved system the emmited water is evenly distributed in all(horizontal) directions. Thus no force applies to the car and its speed is constant.
5: Decrease, p=v*m v2=v1 m2<m1 =>p2<p1
The total momentum is conserved because the emmited rain carries part of the momentum
6: Decrease, E=0.5*v^2*m v2=v1 m2<m1 =>E2<E1

LiquipediaOne eye to kill. Two eyes to live.
micronesia
Profile Blog Joined July 2006
United States24665 Posts
Last Edited: 2008-09-28 16:23:22
September 28 2008 16:22 GMT
#32
Klockan3, glassmazarin:

I don't think you guys arrived at a correct conclusion, but I don't fully understand your explanation so I'd like to clarify.

1) When the air had just finished entering the can, if the can (and its contents) were moving to the right, then what was moving to the left with equal and opposite momentum?

2) As the can fills, there will be pressure on the inside of the wall that has the small puncture, but that should be balanced by the pressure acting on the inside wall on the opposite side of the can that isn't directly across from the puncture. The difference as I see it is that there is a leftward pressure sooner than a rightward pressure. Unless the question writer (who is a physicist) is wrong, the motion of the can will be a motion about the center of mass which ends when the can fills up.

Please respond specifically to those two points.
ModeratorThere are animal crackers for people and there are people crackers for animals.
Klockan3
Profile Blog Joined July 2007
Sweden2866 Posts
September 28 2008 18:55 GMT
#33
On September 29 2008 01:22 micronesia wrote:
Klockan3, glassmazarin:

I don't think you guys arrived at a correct conclusion, but I don't fully understand your explanation so I'd like to clarify.

1) When the air had just finished entering the can, if the can (and its contents) were moving to the right, then what was moving to the left with equal and opposite momentum?

2) As the can fills, there will be pressure on the inside of the wall that has the small puncture, but that should be balanced by the pressure acting on the inside wall on the opposite side of the can that isn't directly across from the puncture. The difference as I see it is that there is a leftward pressure sooner than a rightward pressure. Unless the question writer (who is a physicist) is wrong, the motion of the can will be a motion about the center of mass which ends when the can fills up.

Please respond specifically to those two points.

I am also a physicist...

Anyway:

1: In an open system it is the air which it did not reflect where the hole is. It might be easier to imagine if you see it as a closed system though, imagine that the can is inside a box. As soon as the can gets punctured it reflects less air molecules against one side than the other which means that while it accelerates itself towards one direction it would at the same time accelerate the box it is inside towards the other.

2: Yes, the leftwards pressure always comes before the rightwards pressure equalizes it out. However since a system with no acting forces does not change in velocity we can sum together all of these gaps into the total mechanical work done on the can.
About the center of mass, think like this: Remove everything else from the model except just the gas molecules which are hitting the can. You can see that if it is a regular can the reflected air will create a spherical pattern around the can. However if we open a hole with vacuum we also create a hole in this sphere and the movement of the can is only to make up for this lack of molecules moving in that direction.

And no, as I said, air resistance should not even be considered in the time frame it takes to fill an ordinary sized can with gas under ordinary temperature and pressure and even if we make ridiculous assumptions which would mean it would be a factor it is still debatable what the answer would be.
micronesia
Profile Blog Joined July 2006
United States24665 Posts
September 28 2008 20:23 GMT
#34
On September 29 2008 03:55 Klockan3 wrote:
Show nested quote +
On September 29 2008 01:22 micronesia wrote:
Klockan3, glassmazarin:

I don't think you guys arrived at a correct conclusion, but I don't fully understand your explanation so I'd like to clarify.

1) When the air had just finished entering the can, if the can (and its contents) were moving to the right, then what was moving to the left with equal and opposite momentum?

2) As the can fills, there will be pressure on the inside of the wall that has the small puncture, but that should be balanced by the pressure acting on the inside wall on the opposite side of the can that isn't directly across from the puncture. The difference as I see it is that there is a leftward pressure sooner than a rightward pressure. Unless the question writer (who is a physicist) is wrong, the motion of the can will be a motion about the center of mass which ends when the can fills up.

Please respond specifically to those two points.

I am also a physicist...

This was not obvious to me.

How do you define physicist?

Anyway:

1: In an open system it is the air which it did not reflect where the hole is. It might be easier to imagine if you see it as a closed system though, imagine that the can is inside a box. As soon as the can gets punctured it reflects less air molecules against one side than the other which means that while it accelerates itself towards one direction it would at the same time accelerate the box it is inside towards the other.

2: Yes, the leftwards pressure always comes before the rightwards pressure equalizes it out. However since a system with no acting forces does not change in velocity we can sum together all of these gaps into the total mechanical work done on the can.
About the center of mass, think like this: Remove everything else from the model except just the gas molecules which are hitting the can. You can see that if it is a regular can the reflected air will create a spherical pattern around the can. However if we open a hole with vacuum we also create a hole in this sphere and the movement of the can is only to make up for this lack of molecules moving in that direction.

And no, as I said, air resistance should not even be considered in the time frame it takes to fill an ordinary sized can with gas under ordinary temperature and pressure and even if we make ridiculous assumptions which would mean it would be a factor it is still debatable what the answer would be.

The example you gave is very similar to the one provided in a book which analyzes this problem. I'll let you see the actual drawings rather than my own creations:

http://img141.imageshack.us/my.php?image=poofandfoopgx4.jpg
ModeratorThere are animal crackers for people and there are people crackers for animals.
Klockan3
Profile Blog Joined July 2007
Sweden2866 Posts
Last Edited: 2008-09-28 21:23:32
September 28 2008 21:04 GMT
#35
On September 29 2008 05:23 micronesia wrote:
Show nested quote +
On September 29 2008 03:55 Klockan3 wrote:
On September 29 2008 01:22 micronesia wrote:
Klockan3, glassmazarin:

I don't think you guys arrived at a correct conclusion, but I don't fully understand your explanation so I'd like to clarify.

1) When the air had just finished entering the can, if the can (and its contents) were moving to the right, then what was moving to the left with equal and opposite momentum?

2) As the can fills, there will be pressure on the inside of the wall that has the small puncture, but that should be balanced by the pressure acting on the inside wall on the opposite side of the can that isn't directly across from the puncture. The difference as I see it is that there is a leftward pressure sooner than a rightward pressure. Unless the question writer (who is a physicist) is wrong, the motion of the can will be a motion about the center of mass which ends when the can fills up.

Please respond specifically to those two points.

I am also a physicist...

This was not obvious to me.

How do you define physicist?

Someone who have worked in the field of physics? I have done work on how to utilize the inhomogenous effects of acoustic radiation pressure to guide objects through fluids on a micrometer scale.
On September 29 2008 05:23 micronesia wrote:
The example you gave is very similar to the one provided in a book which analyzes this problem. I'll let you see the actual drawings rather than my own creations:

http://img141.imageshack.us/my.php?image=poofandfoopgx4.jpg

That book is wrong though, if you consider the watercart picture 2 and instead of having a fixed inner containers you would put wheels on them too, then the outer cart and the inner cart would both accelerate in different directions which is obvious. At leasts with the small cart being filled, the other would not as much since fluids are much slower got and a much higher resistance to movement than gases and thus most of the work would just become heat.

And I already explained what he puts in the last picture, that the effects of the pressure during the time it takes for the air to bridge of the volume is certainly not negligible. As I explained in my last post the bouncing nature of the air means that we get the same total work on the objects as if we had just totally removed one of the walls, and if we just removed one of the walls and assume that the can have a volume of 1 cubic decimeter we would get 1000 newtons of force over 1/5000 seconds and a can weighting 10g would then get accelerated to 20 m/s during that fill up process.(Notice that the cans speed is still negligible compared to the speed of the particles of air)

If we just had 1 square centimeter of a hole the process would take ~200-300 times longer but the net work would be exactly the same and the air resistance can not slow such a speed at these time intervals.

Edit: And that would hardly be the first time a science book is wrong.
15vs1
Profile Joined November 2007
64 Posts
September 29 2008 08:23 GMT
#36
The can problem turned out to be tricky but klockan's arguments looks stronger so far.
betaben
Profile Blog Joined September 2007
681 Posts
September 29 2008 19:17 GMT
#37
klockan, I'm still not sure of your position.

if:
*there is no air resistance (the can moves very slow), but
*air pressure is not negligible (the air moves fast and can still exert pressure)
*open system

(no constraints on hole size and outer pressure, because these are not independent when considering the outcome.)

does the can move once a steady state has been reached? (all acceleration has stopped)
if yes, what was the total momentum before and after the puncture?
if no, what slows the can down?
Klockan3
Profile Blog Joined July 2007
Sweden2866 Posts
September 29 2008 19:39 GMT
#38
On September 30 2008 04:17 betaben wrote:
does the can move once a steady state has been reached? (all acceleration has stopped)

If we totally neglect air resistance, yes. (Even though air resistance would slow down anything to a relative near stop no matter how slow it moves if we let time go on)
On September 30 2008 04:17 betaben wrote:
if yes, what was the total momentum before and after the puncture?

Total momentum of what? The can would logically gain momentum exactly equal to the momentum of the air required to fill the can as long as the can were in relative rest compared to the air from the start and that air resistance is totally negligible, because thats how much momentum the can robbed from the outside system by refusing to reflect that much air in a specific direction.

There could be some waste due to shock waves or something else like that but they are also negligible under normal circumstances.

Also I just realized in what way the book author were thinking wrong. He were assuming that you would think that the instream of gas would create a force on the wall and as such it would accelerate due to that for some reason, which of course is a ridiculous thought. However when he made the problem he probably missed that the momental lack of force in the other direction would also make he himself wrong.
betaben
Profile Blog Joined September 2007
681 Posts
Last Edited: 2008-09-29 22:07:31
September 29 2008 21:48 GMT
#39
ok, so ..

Total momentum of what?

of the entire system


The can would logically gain momentum exactly equal to the momentum of the air required to fill the can.


so, your end state is:
1). the can moving in one direction with a body of air (of the same momentum) outside of the can, moving in the opposite direction?
or,
2).with the body of air inside the can?

your wording, "required to fill the can" would imply the latter case, the air inside the can ("to fill the can") will collide with the can (as it must be moving int he opposite direction to the can to balance), nullifying the momentum of both, and the can will stop, giving the over all end state as no can movement.

so this cannot be what you mean (or is it? - do you consider the steady state to be before the collision? if so, then you are just having a disagreement with when 'end state' is called.)

So I'd guess your end state is the first of the options, which has a body of air on the other side of the can, moving away from it.

you say:

... that's how much momentum the can robbed from the outside system by refusing to reflect that much air in a specific direction.


which would support the above, with the air outside moving away from the can.

If so, how do you say again that air is propelled in that direction?
I think you're saying that in the process where the gas on the unpunctured side pushes against the can, there will be an equal amount of gas moving in the opposite direction within the gas (as it's overall momentum is beforehand zero). this does not transfer it's momentum to anything, (unlike the gas moving against the can) so continues travelling away from the can.

Is this true?
Juicyfruit
Profile Joined May 2008
Canada5484 Posts
September 29 2008 23:44 GMT
#40
It's basically the opposite of an explosion.

You would expect the net momentum of the system (the system being the can + the air) to be 0 before and after the puncture (conservation of momentum).

Once the can is punctured, the air particles gains net momentum. That means the can needs to move in the opposite direction to conserve the momentum.

The can won't stop moving until the net momentum of the air becomes 0 again, which occurs at equilibrium.

Arguing that the can doesn't move at all is saying air got into the can without net motion.

Right?
Prev 1 2 3 Next All
Please log in or register to reply.
Live Events Refresh
WardiTV European League
16:00
Swiss Groups Day 2
SKillous vs MixuLIVE!
ShoWTimE vs MaNa
WardiTV1025
TKL 62
Liquipedia
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
mouzHeroMarine 417
BRAT_OK 91
TKL 62
JuggernautJason60
MindelVK 19
StarCraft: Brood War
Britney 22759
Sea 2980
Rain 2663
BeSt 117
Dewaltoss 92
sas.Sziky 35
Aegong 27
zelot 25
Sacsri 24
scan(afreeca) 21
[ Show more ]
GoRush 14
soO 10
yabsab 9
IntoTheRainbow 6
Dota 2
Gorgc7084
qojqva2884
capcasts245
League of Legends
Dendi1123
Counter-Strike
fl0m866
flusha290
Super Smash Bros
Mew2King148
Heroes of the Storm
Liquid`Hasu287
Other Games
FrodaN3124
ceh9540
Lowko367
elazer208
KnowMe166
ArmadaUGS112
Trikslyr53
QueenE50
kaitlyn14
Organizations
StarCraft 2
angryscii 14
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 16 non-featured ]
StarCraft 2
• iHatsuTV 7
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
League of Legends
• Nemesis5568
• Jankos1431
• masondota2310
Other Games
• imaqtpie595
• Shiphtur358
Upcoming Events
Replay Cast
6h 17m
RSL Revival
16h 17m
herO vs SHIN
Reynor vs Cure
OSC
19h 17m
WardiTV European League
22h 17m
Scarlett vs Percival
Jumy vs ArT
YoungYakov vs Shameless
uThermal vs Fjant
Nicoract vs goblin
Harstem vs Gerald
FEL
22h 17m
Korean StarCraft League
1d 9h
CranKy Ducklings
1d 16h
RSL Revival
1d 16h
FEL
1d 22h
Sparkling Tuna Cup
2 days
[ Show More ]
RSL Revival
2 days
FEL
2 days
BSL: ProLeague
3 days
Dewalt vs Bonyth
Replay Cast
4 days
Replay Cast
4 days
The PondCast
5 days
Replay Cast
6 days
RSL Revival
6 days
Liquipedia Results

Completed

Proleague 2025-06-28
HSC XXVII
Heroes 10 EU

Ongoing

JPL Season 2
BSL 2v2 Season 3
BSL Season 20
Acropolis #3
KCM Race Survival 2025 Season 2
CSL 17: 2025 SUMMER
Copa Latinoamericana 4
Championship of Russia 2025
RSL Revival: Season 1
Murky Cup #2
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025
PGL Astana 2025
Asian Champions League '25
BLAST Rivals Spring 2025
MESA Nomadic Masters
CCT Season 2 Global Finals
IEM Melbourne 2025
YaLLa Compass Qatar 2025

Upcoming

CSLPRO Last Chance 2025
CSLPRO Chat StarLAN 3
K-Championship
uThermal 2v2 Main Event
SEL Season 2 Championship
FEL Cracov 2025
Esports World Cup 2025
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.