• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EST 11:00
CET 17:00
KST 01:00
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
ByuL: The Forgotten Master of ZvT13Behind the Blue - Team Liquid History Book16Clem wins HomeStory Cup 289HomeStory Cup 28 - Info & Preview13Rongyi Cup S3 - Preview & Info8
Community News
Weekly Cups (Feb 9-15): herO doubles up2ACS replaced by "ASL Season Open" - Starts 21/0224LiuLi Cup: 2025 Grand Finals (Feb 10-16)46Weekly Cups (Feb 2-8): Classic, Solar, MaxPax win2Nexon's StarCraft game could be FPS, led by UMS maker15
StarCraft 2
General
ByuL: The Forgotten Master of ZvT How do you think the 5.0.15 balance patch (Oct 2025) for StarCraft II has affected the game? Weekly Cups (Feb 9-15): herO doubles up SpeCial on The Tasteless Podcast Nexon's StarCraft game could be FPS, led by UMS maker
Tourneys
PIG STY FESTIVAL 7.0! (19 Feb - 1 Mar) LiuLi Cup: 2025 Grand Finals (Feb 10-16) Master Swan Open (Global Bronze-Master 2) WardiTV Team League Season 10 $5,000 WardiTV Winter Championship 2026
Strategy
Custom Maps
Map Editor closed ? [A] Starcraft Sound Mod
External Content
Mutation # 513 Attrition Warfare The PondCast: SC2 News & Results Mutation # 512 Overclocked Mutation # 511 Temple of Rebirth
Brood War
General
BGH Auto Balance -> http://bghmmr.eu/ TvZ is the most complete match up Gypsy to Korea Ladder maps - how we can make blizz update them? Brood War inspired Terran vs Zerg cinematic – feed
Tourneys
Escore Tournament StarCraft Season 1 [Megathread] Daily Proleagues Small VOD Thread 2.0 KCM Race Survival 2026 Season 1
Strategy
Simple Questions, Simple Answers Fighting Spirit mining rates Zealot bombing is no longer popular? Current Meta
Other Games
General Games
Diablo 2 thread ZeroSpace Megathread Nintendo Switch Thread Path of Exile Battle Aces/David Kim RTS Megathread
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Mafia Game Mode Feedback/Ideas Vanilla Mini Mafia
Community
General
US Politics Mega-thread Russo-Ukrainian War Thread Ask and answer stupid questions here! Things Aren’t Peaceful in Palestine European Politico-economics QA Mega-thread
Fan Clubs
The IdrA Fan Club The herO Fan Club!
Media & Entertainment
[Req][Books] Good Fantasy/SciFi books [Manga] One Piece Anime Discussion Thread
Sports
2024 - 2026 Football Thread Formula 1 Discussion TL MMA Pick'em Pool 2013
World Cup 2022
Tech Support
TL Community
The Automated Ban List
Blogs
The Search For Meaning in Vi…
TrAiDoS
My 2025 Magic: The Gathering…
DARKING
Life Update and thoughts.
FuDDx
How do archons sleep?
8882
StarCraft improvement
iopq
Customize Sidebar...

Website Feedback

Closed Threads



Active: 2242 users

GSL Code S Membership statistical analysis - Page 3

Forum Index > StarCraft 2 Tournaments
Post a Reply
Prev 1 2 3 All
Disastorm
Profile Joined January 2008
United States922 Posts
December 10 2010 22:32 GMT
#41
On December 10 2010 16:51 Mip wrote:
Take season 2 for example, We know FruitDealer is amazing because he won Season 1. FruitDealer loses to Foxer in Ro32, that's going to tell me that Foxer is at least skillful enough to beat FruitDealer, which is quite substancial. Then Foxer goes on to lose against NesTea in a nearly dead even match. That's going to hint toward thinking Foxer and NesTea are about at the same level.


Is this actually true though? Do the calculations always assume things like if player a > b and player b > c then player a >c, because I know this isn't the case in most competitive gaming. There are always many cases of rock paper scissors relationships like a > b, b > c, c >a .
"Don't worry so much man. There won't be any more zergs left to QQ. Lots of QQ about TvT is incoming though I bet." - Vrok 9/21/10
See.Blue
Profile Blog Joined October 2008
United States2673 Posts
December 10 2010 22:39 GMT
#42
On December 10 2010 12:34 Mip wrote:
So I've been working on a SC2 player ranking algorithm (see my other post).

So far I've only used the GSL, and I've only included player rankings, no race bias or map bias, or time-based skill evolution (all in progress and will be implemented as my data quantity increases).

Anyway, so I was looking over the list of Code S players and thought to myself that a lot of those players could easily have lost some of their matches and failed to qualify for Code S. So I wanted to see, based on the data, what was the probability of each player actually being in the Top 32.

Here are the results in a Google Spreadsheet

So as you look at that data, bear in mind, this data only obseving the GSL bracket final 64 player wins/losses is all the data in the world on the subject. This makes the algorithm non-ideal for prediction of the top skilled players. But it is ideal for assessing the uncertainty about the point system in actually getting the best players (at least for the top players).

Also bear in mind, this model implicitly assumes that not-qualifying for top 64 and not registering for the tournament are equivalent, which isn't a fair assumption, but there's no data available to fix this. JookToJung gets the raw end of this assumption. He must be very good to qualify all 3 seasons, but the model sees only his losing in the early rounds. This isn't something I like, but I don't have the proper data to correct this problem at this time.

So the table shows a lot of uncertainty about who actually belongs in Code S. There are plenty that could easy have been Code S if things turned out a slightly differently. July is easily Code S caliber, as is Ret, Loner only needed one more set and he'd be S class.

If I had more data on the qualifying rounds, I'm sure that people like JookToJung would look better. I might look into grouping all the players that have 3 or fewer games into one. Because they are hardly estimable with how little data there is on them.

But the higher up on the spreadsheet you go, the results get a lot more accurate since they are based on more games played. There are players that are clearly Top 32, a lot of people are really good, but the uncertainty associated with knowing their skills is fairly high (completely an artifact of not having a lot of data on them). The way the bracket system works, it just doesn't give very good estimates for the people who get knocked out in the first rounds.

Anyway, it is what it is. It should give you an underlying sense on what kind of information is in the data. You don't have to agree with the results, it's just what the data seem to be pointing to (under the constraints of the assumptions I had to make).


Out of curiosity, as a math person, how did you compute the likelihoods?
GeorgeForeman
Profile Joined April 2005
United States1746 Posts
Last Edited: 2010-12-11 00:45:25
December 11 2010 00:44 GMT
#43
On December 11 2010 05:46 Mip wrote:
@GeorgeForeman and confusedcrib I'm glad you paid attention in your intro stats classes, but in Bayesian statistics, you can integrate over the uncertainty in your estimates to obtain a single number that takes into account all of the uncertainty you have in your estimate. We can say with Bayesian statistics that based on our current state of knowledge (priors + data provided) that the probability of Player X actually being Top 32 is Y%.

That you would bring up a t-test for this model immediately puts you at an intro stats level in my brain. Your instinct is correct for that level of stats knowledge, but in this case, it should not be a concern to you. You should think of those percentages in terms of what I described at the end of the paragraph above.

However, to appease you guys, I added a column of Standard Errors. If you are using your intro stats knowledge,however, you will misinterpret them because they mean different things if your data are not from a normal/gaussian distribution.

For a binary outcome, the variance is prob * (1 - prob), and then the standard error is the square root of that, but you have to throw away any thoughts that, for example, 3 standard errors gives you a confidence interval or any nonsense like that that you are taught in intro stats. For example, for NesTea, if you tried to do that, you'd get a confidence interval that included probabilities greater than 1. To do it properly, you'd have to convert to a odds ratio, compute confidence intervals, then convert back to a probability metric.


Kid, I'm a 4th year grad student working on my dissertation in statistics. I've TAUGHT an intro class. If you're going to talk down to someone, at least make sure you know more than they do. Asking for uncertainty estimates only connotes a "t-test" if you're too narrow-minded to consider anything else. As far as I can understand (which is difficult, since you didn't exactly explain it in either of your OPs) you've calculated a posterior distribution for each player's "true skill level". Using the means of these distributions as point estimates you constructed a ranking of them. (This was your previous post.) You've reported standard errors for these, though I'm not sure what those are. Are these numbers the posterior estimates for the standard deviation? Because that's not the same thing as a standard error.

Now, as best as I can tell, you took all of this data and calculated for each player, i, the probability that this player is better than all but at most 31 other players. In other words:

P(S_i>S_j | j is in T and T contains at most 31 elements)

Now, this last thing seems extraordinarily difficult to calculate, given that your estimates for each S_i all come with their own associated variances and that the posterior distribution is dependent upon each of the other. Basically, you've got a p-dimensional normal distribution (where p is the number of players in your data set) with a very confusing-looking covariance matrix. Maybe there's software that makes such a calculation trivial that I'm not aware of, but to me, that looks like a difficult problem. Bravo for taking the time to solve it.

Assuming this is your approach (and again, I'll emphasize that I'm forced to do a lot of inferring because your actual approach is nowhere explained with any degree of clarity), what you end up with are posterior probability estimates. If that is indeed what your spreadsheet is reporting, then I understand why you didn't report the standard deviation, as it's completely determined by the posterior probability estimate.

That said, I'm not sure how useful this second list is. I think the first (where you estimate each player's skill and rank them) does a far better job of not only giving us an idea of who the best players are but also give us an idea of how volatile the estimates are. This "are they REALLY top 32" stuff just muddles the issue IMO. Particularly, it's easy for people to confuse whether someone has a high probability of being top 32 because they're really, really good or whether it's because you've just got a lot of data that tells you to be pretty sure the guy is solid.

Just my $.02. I remember when I took Bayesian a couple of classmates did an analysis of SC1 where they tried to predict winners of matches based on maps, races, and the amount of days the players had since their last game. (I guess this was to measure prep time or something.) It was pretty fun stuff.
like a school bus through a bunch of kids
Mip
Profile Joined June 2010
United States63 Posts
Last Edited: 2010-12-11 08:15:16
December 11 2010 07:29 GMT
#44
I've been hesitant to be too technical in these threads because most of the audience doesn't have a stats background.

The data is a list of names in this format:
Winner Loser
--------------------
Player1 Player2
Player1 Player2
Player2 Player1
Player2 Player3
etc.

The likelihood is the Bradley-Terry model f(x) = exp(skill1)/(exp(skill1)+exp(skill2)).

The priors on the skill parameters are Normal(0,sigma^2) (Bradley Terry model is only dependent on the difference of the skills. Players with skills 100 and 101 would yield the same probability comparisons as if we subtracted 100 to make it 0 and 1, so the 0 mean is arbitrary. It's has same theoretical backing that the ELO system is based off of)

My professor said that sigma^2 could probably be fixed, to test, I just gave it a somewhat informative prior around 1 to see if it the data would alter it (they did not).

So the parameters are run through an MCMC algorithm. Had to use Metropolis steps to calculate draws from the posterior distributions of the skill parameters.

My first report was the mean of the posterior draws and the standard deviation of the posterior draws, then the mean - 2 standard deviations to give a sort of, "at their worst" skill parameter.

The second report, I took each draw from the skill parameters and took the top 32 for each one. Then I calculated the proportion of the times each player appeared in the top 32 over all posterior draws.
Vorlik
Profile Joined October 2010
1522 Posts
December 11 2010 08:02 GMT
#45
This is fascinating. I like it! :-]
Prev 1 2 3 All
Please log in or register to reply.
Live Events Refresh
WardiTV Winter Champion…
12:00
Group A
WardiTV944
3DClanTV 52
Liquipedia
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
Hui .330
ProTech67
Harstem 24
goblin 20
StarCraft: Brood War
GuemChi 3576
Calm 2308
Horang2 1837
Bisu 1664
Larva 1084
firebathero 755
BeSt 535
Soma 493
Stork 421
ggaemo 361
[ Show more ]
Mini 359
EffOrt 351
Light 301
Snow 257
Rush 227
hero 214
Mong 152
Shuttle 131
JulyZerg 103
PianO 87
Barracks 69
Aegong 46
[sc1f]eonzerg 45
JYJ 30
Movie 30
ZergMaN 29
zelot 24
sorry 22
910 21
Shinee 11
Terrorterran 10
SilentControl 10
NaDa 7
Dota 2
Gorgc5733
Dendi801
Counter-Strike
fl0m1425
Foxcn289
adren_tv46
Heroes of the Storm
Khaldor54
Other Games
singsing2804
hiko830
Lowko270
DeMusliM250
Sick248
crisheroes135
RotterdaM134
Liquid`VortiX105
QueenE61
Trikslyr33
KnowMe32
Organizations
Counter-Strike
PGL30044
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 17 non-featured ]
StarCraft 2
• poizon28 20
• HeavenSC 13
• Kozan
• sooper7s
• AfreecaTV YouTube
• intothetv
• Migwel
• IndyKCrew
• LaughNgamezSOOP
StarCraft: Brood War
• Michael_bg 4
• STPLYoutube
• ZZZeroYoutube
• BSLYoutube
League of Legends
• Nemesis7771
• TFBlade868
Other Games
• Shiphtur121
• WagamamaTV37
Upcoming Events
Replay Cast
8h
PiG Sty Festival
17h
Maru vs Bunny
Classic vs SHIN
The PondCast
18h
KCM Race Survival
18h
WardiTV Winter Champion…
20h
OSC
20h
Replay Cast
1d 8h
PiG Sty Festival
1d 17h
Clem vs Percival
Zoun vs Solar
Escore
1d 18h
Epic.LAN
1d 20h
[ Show More ]
Replay Cast
2 days
PiG Sty Festival
2 days
herO vs NightMare
Reynor vs Cure
CranKy Ducklings
2 days
Epic.LAN
2 days
Replay Cast
3 days
PiG Sty Festival
3 days
Serral vs YoungYakov
ByuN vs ShoWTimE
Sparkling Tuna Cup
3 days
Replay Cast
4 days
Replay Cast
4 days
Wardi Open
4 days
Monday Night Weeklies
5 days
Replay Cast
5 days
WardiTV Winter Champion…
5 days
WardiTV Winter Champion…
6 days
Liquipedia Results

Completed

C-League Week 31
LiuLi Cup: 2025 Grand Finals
Underdog Cup #3

Ongoing

KCM Race Survival 2026 Season 1
WardiTV Winter 2026
Nations Cup 2026
PGL Cluj-Napoca 2026
IEM Kraków 2026
BLAST Bounty Winter 2026
BLAST Bounty Winter Qual
eXTREMESLAND 2025
SL Budapest Major 2025

Upcoming

Escore Tournament S1: King of Kings
[S:21] ASL SEASON OPEN 1st Round
[S:21] ASL SEASON OPEN 1st Round Qualifier
Jeongseon Sooper Cup
Spring Cup 2026: China & Korea Invitational
[S:21] ASL SEASON OPEN 2nd Round
[S:21] ASL SEASON OPEN 2nd Round Qualifier
HSC XXIX
uThermal 2v2 2026 Main Event
Bellum Gens Elite Stara Zagora 2026
RSL Revival: Season 4
PiG Sty Festival 7.0
BLAST Rivals Spring 2026
CCT Season 3 Global Finals
FISSURE Playground #3
IEM Rio 2026
PGL Bucharest 2026
Stake Ranked Episode 1
BLAST Open Spring 2026
ESL Pro League Season 23
ESL Pro League Season 23
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2026 TLnet. All Rights Reserved.