• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EST 21:02
CET 03:02
KST 11:02
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
RSL Revival - 2025 Season Finals Preview8RSL Season 3 - Playoffs Preview0RSL Season 3 - RO16 Groups C & D Preview0RSL Season 3 - RO16 Groups A & B Preview2TL.net Map Contest #21: Winners12
Community News
Weekly Cups (Jan 5-11): Clem wins big offline, Trigger upsets0$21,000 Rongyi Cup Season 3 announced (Jan 22-Feb 7)12Weekly Cups (Dec 29-Jan 4): Protoss rolls, 2v2 returns7[BSL21] Non-Korean Championship - Starts Jan 103SC2 All-Star Invitational: Jan 17-1822
StarCraft 2
General
Weekly Cups (Jan 5-11): Clem wins big offline, Trigger upsets Weekly Cups (Dec 29-Jan 4): Protoss rolls, 2v2 returns Spontaneous hotkey change zerg Chinese SC2 server to reopen; live all-star event in Hangzhou SC2 All-Star Invitational: Jan 17-18
Tourneys
$25,000 Streamerzone StarCraft Pro Series announced $21,000 Rongyi Cup Season 3 announced (Jan 22-Feb 7) WardiTV Winter Cup WardiTV Mondays SC2 AI Tournament 2026
Strategy
Simple Questions Simple Answers
Custom Maps
Map Editor closed ?
External Content
Mutation # 508 Violent Night Mutation # 507 Well Trained Mutation # 506 Warp Zone Mutation # 505 Rise From Ashes
Brood War
General
Potential ASL qualifier breakthroughs? BGH Auto Balance -> http://bghmmr.eu/ BW General Discussion StarCraft & BroodWar Campaign Speedrun Quest Data analysis on 70 million replays
Tourneys
[Megathread] Daily Proleagues [BSL21] Grand Finals - Sunday 21:00 CET [BSL21] Non-Korean Championship - Starts Jan 10 SLON Grand Finals – Season 2
Strategy
Game Theory for Starcraft Simple Questions, Simple Answers Current Meta [G] How to get started on ladder as a new Z player
Other Games
General Games
Beyond All Reason Nintendo Switch Thread Awesome Games Done Quick 2026! Mechabellum Stormgate/Frost Giant Megathread
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
Vanilla Mini Mafia Mafia Game Mode Feedback/Ideas
Community
General
US Politics Mega-thread Russo-Ukrainian War Thread European Politico-economics QA Mega-thread Things Aren’t Peaceful in Palestine Trading/Investing Thread
Fan Clubs
White-Ra Fan Club
Media & Entertainment
Anime Discussion Thread
Sports
2024 - 2026 Football Thread
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
The Automated Ban List TL+ Announced
Blogs
My 2025 Magic: The Gathering…
DARKING
Physical Exercise (HIIT) Bef…
TrAiDoS
Life Update and thoughts.
FuDDx
How do archons sleep?
8882
James Bond movies ranking - pa…
Topin
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1159 users

GSL Code S Membership statistical analysis - Page 3

Forum Index > StarCraft 2 Tournaments
Post a Reply
Prev 1 2 3 All
Disastorm
Profile Joined January 2008
United States922 Posts
December 10 2010 22:32 GMT
#41
On December 10 2010 16:51 Mip wrote:
Take season 2 for example, We know FruitDealer is amazing because he won Season 1. FruitDealer loses to Foxer in Ro32, that's going to tell me that Foxer is at least skillful enough to beat FruitDealer, which is quite substancial. Then Foxer goes on to lose against NesTea in a nearly dead even match. That's going to hint toward thinking Foxer and NesTea are about at the same level.


Is this actually true though? Do the calculations always assume things like if player a > b and player b > c then player a >c, because I know this isn't the case in most competitive gaming. There are always many cases of rock paper scissors relationships like a > b, b > c, c >a .
"Don't worry so much man. There won't be any more zergs left to QQ. Lots of QQ about TvT is incoming though I bet." - Vrok 9/21/10
See.Blue
Profile Blog Joined October 2008
United States2673 Posts
December 10 2010 22:39 GMT
#42
On December 10 2010 12:34 Mip wrote:
So I've been working on a SC2 player ranking algorithm (see my other post).

So far I've only used the GSL, and I've only included player rankings, no race bias or map bias, or time-based skill evolution (all in progress and will be implemented as my data quantity increases).

Anyway, so I was looking over the list of Code S players and thought to myself that a lot of those players could easily have lost some of their matches and failed to qualify for Code S. So I wanted to see, based on the data, what was the probability of each player actually being in the Top 32.

Here are the results in a Google Spreadsheet

So as you look at that data, bear in mind, this data only obseving the GSL bracket final 64 player wins/losses is all the data in the world on the subject. This makes the algorithm non-ideal for prediction of the top skilled players. But it is ideal for assessing the uncertainty about the point system in actually getting the best players (at least for the top players).

Also bear in mind, this model implicitly assumes that not-qualifying for top 64 and not registering for the tournament are equivalent, which isn't a fair assumption, but there's no data available to fix this. JookToJung gets the raw end of this assumption. He must be very good to qualify all 3 seasons, but the model sees only his losing in the early rounds. This isn't something I like, but I don't have the proper data to correct this problem at this time.

So the table shows a lot of uncertainty about who actually belongs in Code S. There are plenty that could easy have been Code S if things turned out a slightly differently. July is easily Code S caliber, as is Ret, Loner only needed one more set and he'd be S class.

If I had more data on the qualifying rounds, I'm sure that people like JookToJung would look better. I might look into grouping all the players that have 3 or fewer games into one. Because they are hardly estimable with how little data there is on them.

But the higher up on the spreadsheet you go, the results get a lot more accurate since they are based on more games played. There are players that are clearly Top 32, a lot of people are really good, but the uncertainty associated with knowing their skills is fairly high (completely an artifact of not having a lot of data on them). The way the bracket system works, it just doesn't give very good estimates for the people who get knocked out in the first rounds.

Anyway, it is what it is. It should give you an underlying sense on what kind of information is in the data. You don't have to agree with the results, it's just what the data seem to be pointing to (under the constraints of the assumptions I had to make).


Out of curiosity, as a math person, how did you compute the likelihoods?
GeorgeForeman
Profile Joined April 2005
United States1746 Posts
Last Edited: 2010-12-11 00:45:25
December 11 2010 00:44 GMT
#43
On December 11 2010 05:46 Mip wrote:
@GeorgeForeman and confusedcrib I'm glad you paid attention in your intro stats classes, but in Bayesian statistics, you can integrate over the uncertainty in your estimates to obtain a single number that takes into account all of the uncertainty you have in your estimate. We can say with Bayesian statistics that based on our current state of knowledge (priors + data provided) that the probability of Player X actually being Top 32 is Y%.

That you would bring up a t-test for this model immediately puts you at an intro stats level in my brain. Your instinct is correct for that level of stats knowledge, but in this case, it should not be a concern to you. You should think of those percentages in terms of what I described at the end of the paragraph above.

However, to appease you guys, I added a column of Standard Errors. If you are using your intro stats knowledge,however, you will misinterpret them because they mean different things if your data are not from a normal/gaussian distribution.

For a binary outcome, the variance is prob * (1 - prob), and then the standard error is the square root of that, but you have to throw away any thoughts that, for example, 3 standard errors gives you a confidence interval or any nonsense like that that you are taught in intro stats. For example, for NesTea, if you tried to do that, you'd get a confidence interval that included probabilities greater than 1. To do it properly, you'd have to convert to a odds ratio, compute confidence intervals, then convert back to a probability metric.


Kid, I'm a 4th year grad student working on my dissertation in statistics. I've TAUGHT an intro class. If you're going to talk down to someone, at least make sure you know more than they do. Asking for uncertainty estimates only connotes a "t-test" if you're too narrow-minded to consider anything else. As far as I can understand (which is difficult, since you didn't exactly explain it in either of your OPs) you've calculated a posterior distribution for each player's "true skill level". Using the means of these distributions as point estimates you constructed a ranking of them. (This was your previous post.) You've reported standard errors for these, though I'm not sure what those are. Are these numbers the posterior estimates for the standard deviation? Because that's not the same thing as a standard error.

Now, as best as I can tell, you took all of this data and calculated for each player, i, the probability that this player is better than all but at most 31 other players. In other words:

P(S_i>S_j | j is in T and T contains at most 31 elements)

Now, this last thing seems extraordinarily difficult to calculate, given that your estimates for each S_i all come with their own associated variances and that the posterior distribution is dependent upon each of the other. Basically, you've got a p-dimensional normal distribution (where p is the number of players in your data set) with a very confusing-looking covariance matrix. Maybe there's software that makes such a calculation trivial that I'm not aware of, but to me, that looks like a difficult problem. Bravo for taking the time to solve it.

Assuming this is your approach (and again, I'll emphasize that I'm forced to do a lot of inferring because your actual approach is nowhere explained with any degree of clarity), what you end up with are posterior probability estimates. If that is indeed what your spreadsheet is reporting, then I understand why you didn't report the standard deviation, as it's completely determined by the posterior probability estimate.

That said, I'm not sure how useful this second list is. I think the first (where you estimate each player's skill and rank them) does a far better job of not only giving us an idea of who the best players are but also give us an idea of how volatile the estimates are. This "are they REALLY top 32" stuff just muddles the issue IMO. Particularly, it's easy for people to confuse whether someone has a high probability of being top 32 because they're really, really good or whether it's because you've just got a lot of data that tells you to be pretty sure the guy is solid.

Just my $.02. I remember when I took Bayesian a couple of classmates did an analysis of SC1 where they tried to predict winners of matches based on maps, races, and the amount of days the players had since their last game. (I guess this was to measure prep time or something.) It was pretty fun stuff.
like a school bus through a bunch of kids
Mip
Profile Joined June 2010
United States63 Posts
Last Edited: 2010-12-11 08:15:16
December 11 2010 07:29 GMT
#44
I've been hesitant to be too technical in these threads because most of the audience doesn't have a stats background.

The data is a list of names in this format:
Winner Loser
--------------------
Player1 Player2
Player1 Player2
Player2 Player1
Player2 Player3
etc.

The likelihood is the Bradley-Terry model f(x) = exp(skill1)/(exp(skill1)+exp(skill2)).

The priors on the skill parameters are Normal(0,sigma^2) (Bradley Terry model is only dependent on the difference of the skills. Players with skills 100 and 101 would yield the same probability comparisons as if we subtracted 100 to make it 0 and 1, so the 0 mean is arbitrary. It's has same theoretical backing that the ELO system is based off of)

My professor said that sigma^2 could probably be fixed, to test, I just gave it a somewhat informative prior around 1 to see if it the data would alter it (they did not).

So the parameters are run through an MCMC algorithm. Had to use Metropolis steps to calculate draws from the posterior distributions of the skill parameters.

My first report was the mean of the posterior draws and the standard deviation of the posterior draws, then the mean - 2 standard deviations to give a sort of, "at their worst" skill parameter.

The second report, I took each draw from the skill parameters and took the top 32 for each one. Then I calculated the proportion of the times each player appeared in the top 32 over all posterior draws.
Vorlik
Profile Joined October 2010
1522 Posts
December 11 2010 08:02 GMT
#45
This is fascinating. I like it! :-]
Prev 1 2 3 All
Please log in or register to reply.
Live Events Refresh
Next event in 9h 58m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
PiGStarcraft548
White-Ra 150
RuFF_SC2 56
CosmosSc2 44
StarCraft: Brood War
Britney 13158
Artosis 814
Shuttle 218
Sharp 112
NaDa 37
GoRush 25
Dota 2
NeuroSwarm46
League of Legends
C9.Mang0390
Counter-Strike
summit1g8826
Coldzera 1481
Super Smash Bros
hungrybox453
PPMD75
Other Games
tarik_tv6438
JimRising 195
XaKoH 177
Maynarde143
Liquid`Ken6
Organizations
Other Games
gamesdonequick3038
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 16 non-featured ]
StarCraft 2
• HeavenSC 62
• davetesta19
• intothetv
• AfreecaTV YouTube
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• Azhi_Dahaki15
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• masondota22146
Other Games
• imaqtpie2079
• Shiphtur253
Upcoming Events
WardiTV Invitational
9h 58m
PiGosaur Cup
22h 58m
WardiTV Invitational
1d 9h
The PondCast
2 days
OSC
2 days
OSC
3 days
All Star Teams
4 days
INnoVation vs soO
sOs vs Scarlett
uThermal 2v2 Circuit
4 days
All Star Teams
5 days
MMA vs DongRaeGu
Rogue vs Oliveira
Sparkling Tuna Cup
5 days
[ Show More ]
OSC
5 days
Replay Cast
6 days
Wardi Open
6 days
Liquipedia Results

Completed

Proleague 2026-01-12
Big Gabe Cup #3
NA Kuram Kup

Ongoing

C-Race Season 1
IPSL Winter 2025-26
BSL 21 Non-Korean Championship
CSL 2025 WINTER (S19)
OSC Championship Season 13
Underdog Cup #3
BLAST Bounty Winter Qual
eXTREMESLAND 2025
SL Budapest Major 2025
ESL Impact League Season 8
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025

Upcoming

Escore Tournament S1: W4
Acropolis #4
IPSL Spring 2026
Bellum Gens Elite Stara Zagora 2026
HSC XXVIII
Rongyi Cup S3
Thunderfire SC2 All-star 2025
Nations Cup 2026
BLAST Open Spring 2026
ESL Pro League Season 23
ESL Pro League Season 23
PGL Cluj-Napoca 2026
IEM Kraków 2026
BLAST Bounty Winter 2026
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2026 TLnet. All Rights Reserved.