• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 04:55
CEST 10:55
KST 17:55
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
[ASL19] Finals Recap: Standing Tall6HomeStory Cup 27 - Info & Preview18Classic wins Code S Season 2 (2025)16Code S RO4 & Finals Preview: herO, Rogue, Classic, GuMiho0TL Team Map Contest #5: Presented by Monster Energy6
Community News
Flash Announces Hiatus From ASL41Weekly Cups (June 23-29): Reynor in world title form?12FEL Cracov 2025 (July 27) - $8000 live event16Esports World Cup 2025 - Final Player Roster16Weekly Cups (June 16-22): Clem strikes back1
StarCraft 2
General
Statistics for vetoed/disliked maps Esports World Cup 2025 - Final Player Roster The SCII GOAT: A statistical Evaluation How does the number of casters affect your enjoyment of esports? Weekly Cups (June 23-29): Reynor in world title form?
Tourneys
RSL: Revival, a new crowdfunded tournament series [GSL 2025] Code S: Season 2 - Semi Finals & Finals $5,100+ SEL Season 2 Championship (SC: Evo) FEL Cracov 2025 (July 27) - $8000 live event HomeStory Cup 27 (June 27-29)
Strategy
How did i lose this ZvP, whats the proper response Simple Questions Simple Answers
Custom Maps
[UMS] Zillion Zerglings
External Content
Mutation # 480 Moths to the Flame Mutation # 479 Worn Out Welcome Mutation # 478 Instant Karma Mutation # 477 Slow and Steady
Brood War
General
Help: rep cant save Player “Jedi” cheat on CSL Flash Announces Hiatus From ASL [ASL19] Finals Recap: Standing Tall BGH Auto Balance -> http://bghmmr.eu/
Tourneys
[Megathread] Daily Proleagues [BSL20] GosuLeague RO16 - Tue & Wed 20:00+CET The Casual Games of the Week Thread [BSL20] ProLeague LB Final - Saturday 20:00 CET
Strategy
Simple Questions, Simple Answers I am doing this better than progamers do.
Other Games
General Games
Stormgate/Frost Giant Megathread Nintendo Switch Thread Path of Exile What do you want from future RTS games? Beyond All Reason
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
Russo-Ukrainian War Thread US Politics Mega-thread Things Aren’t Peaceful in Palestine Trading/Investing Thread The Games Industry And ATVI
Fan Clubs
SKT1 Classic Fan Club! Maru Fan Club
Media & Entertainment
Anime Discussion Thread [Manga] One Piece [\m/] Heavy Metal Thread
Sports
2024 - 2025 Football Thread NBA General Discussion Formula 1 Discussion TeamLiquid Health and Fitness Initiative For 2023 NHL Playoffs 2024
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
The Automated Ban List
Blogs
from making sc maps to makin…
Husyelt
Blog #2
tankgirl
Game Sound vs. Music: The Im…
TrAiDoS
StarCraft improvement
iopq
Heero Yuy & the Tax…
KrillinFromwales
Trip to the Zoo
micronesia
Customize Sidebar...

Website Feedback

Closed Threads



Active: 584 users

Difficult Math Puzzle !

Blogs > kdog3683
Post a Reply
1 2 Next All
kdog3683
Profile Blog Joined January 2007
United States916 Posts
May 14 2009 19:01 GMT
#1
A man buys two boxes of matches and puts them in his pocket. Every time he has to light a match, he selects at random one box or the other. After some time, he takes one of the boxes from his pocket, and finds it is empty (after absentmindedly placing the box back in his pocket after using the last match). Supposing that each box originally had n matches, what is the probability that there are now k matches in the other box? (Here, 0 ≤ k ≤ n.)

*
Multiply your efforts.
Muirhead
Profile Blog Joined October 2007
United States556 Posts
Last Edited: 2009-05-14 19:24:08
May 14 2009 19:08 GMT
#2
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.
starleague.mit.edu
Fontong
Profile Blog Joined December 2007
United States6454 Posts
May 14 2009 19:12 GMT
#3
I'm assuming Difficult Math Puzzle = Homework Problem that you need help solving?
[SECRET FONT] "Dragoon bunker"
Deleted User 3420
Profile Blog Joined May 2003
24492 Posts
Last Edited: 2009-05-14 19:12:45
May 14 2009 19:12 GMT
#4
lol math is confusing!
im curious how this will be answered
it seems like it might be easier than a couple of the other ones lately, tho
Jonoman92
Profile Blog Joined September 2006
United States9103 Posts
May 14 2009 19:27 GMT
#5
Yea I'd like to see the solution and hear the logic but I'm not quite sure how to do it myself.
naonao
Profile Blog Joined November 2008
United States847 Posts
May 14 2009 19:47 GMT
#6
+ Show Spoiler +
1-(1/2)^n
since having k<n only means that at least 1 match was pulled out of the other box. Then (1/2)^n is the probability that all of the matches were pulled from one box, which is the only possible way for k >= n. So you subtract it from 1 to find the probability of k<n
Pliers
Profile Joined October 2008
Canada42 Posts
Last Edited: 2009-05-14 19:50:05
May 14 2009 19:49 GMT
#7
On May 15 2009 04:08 Muirhead wrote:
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.


Not sure If I agree with you. (1/2)^(2n-k) I think you're assuming that for every match drawn till 2n-k you would have 1/2 probability for the matches in either box however when a match is drawn it is not replaced therefore the probability changes. Not sure how you have (2n-k-1 C n-1) since the OP asked what the probability of the box having k matches left when the other box is empty.

My logic is one box must run out therefore there is 2 choose 1 boxes and n choose n matches for one of the boxes and n choose n-k for the other. While the total probably is 2n choose 2n-k giving:

[2*1*(n C n-k)]/(2n C 2n-k)
Muirhead
Profile Blog Joined October 2007
United States556 Posts
May 14 2009 19:51 GMT
#8
Yes the question depends on if matches are selected at random or boxes are selected at random. I assume from his wording that he meant the latter.
starleague.mit.edu
Macavenger
Profile Blog Joined January 2008
United States1132 Posts
Last Edited: 2009-05-14 19:55:09
May 14 2009 19:52 GMT
#9
On May 15 2009 04:08 Muirhead wrote:
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.

+ Show Spoiler +
Where do you get that initial factor of 2 from, and why choosing n-1? Shouldn't you be choosing which n come from the empty box, since if I read the question right, he doesn't know exactly when he emptied it? I feel like it should just be (2n-k C n) * .5^(2n-k)

Edit: Oh, the 2 comes from the fact that he could be pulling either box to find empty I guess?
Muirhead
Profile Blog Joined October 2007
United States556 Posts
May 14 2009 19:56 GMT
#10
On May 15 2009 04:52 Macavenger wrote:
Show nested quote +
On May 15 2009 04:08 Muirhead wrote:
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.

+ Show Spoiler +
Where do you get that initial factor of 2 from, and why choosing n-1? Shouldn't you be choosing which n come from the empty box, since if I read the question right, he doesn't know exactly when he emptied it? I feel like it should just be (2n-k C n) * .5^(2n-k)



+ Show Spoiler +
The factor of 2 comes from the fact that there are two boxes. The n-1 comes from the fact that the box of the (2n-k)th match is fixed.
starleague.mit.edu
Pliers
Profile Joined October 2008
Canada42 Posts
May 14 2009 20:05 GMT
#11
On May 15 2009 04:56 Muirhead wrote:
Show nested quote +
On May 15 2009 04:52 Macavenger wrote:
On May 15 2009 04:08 Muirhead wrote:
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.

+ Show Spoiler +
Where do you get that initial factor of 2 from, and why choosing n-1? Shouldn't you be choosing which n come from the empty box, since if I read the question right, he doesn't know exactly when he emptied it? I feel like it should just be (2n-k C n) * .5^(2n-k)



The factor of 2 comes from the fact that there are two boxes. The n-1 comes from the fact that the box of the (2n-k)th match is fixed.


How is it fixed if it wasn't specified which box he drew it from? All we know is that once he drew the 2n-kth match one of the boxes is empty.
Muirhead
Profile Blog Joined October 2007
United States556 Posts
May 14 2009 20:06 GMT
#12
Just work out some small cases like n=3, k=2 and you'll see what I mean
starleague.mit.edu
Macavenger
Profile Blog Joined January 2008
United States1132 Posts
May 14 2009 20:11 GMT
#13
On May 15 2009 04:56 Muirhead wrote:
Show nested quote +
On May 15 2009 04:52 Macavenger wrote:
On May 15 2009 04:08 Muirhead wrote:
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.

+ Show Spoiler +
Where do you get that initial factor of 2 from, and why choosing n-1? Shouldn't you be choosing which n come from the empty box, since if I read the question right, he doesn't know exactly when he emptied it? I feel like it should just be (2n-k C n) * .5^(2n-k)



+ Show Spoiler +
The factor of 2 comes from the fact that there are two boxes. The n-1 comes from the fact that the box of the (2n-k)th match is fixed.

+ Show Spoiler +
I don't see how the (2n-k)th match is fixed according to the problem statement, though. The way I read it, he pulls a box out (I assume when he needs another match) and finds it was already empty; that the last match must have come from that box is not specified. For all we know, he could have just emptied it, or he could have emptied it 2 draws ago, or he could have pulled the first n matches from that box and then the remaining n-k from the second before discovering the first was empty. Thus, we should be able to choose any n of the 2n-k matches as coming from that box, no?
Pliers
Profile Joined October 2008
Canada42 Posts
May 14 2009 20:26 GMT
#14
On May 15 2009 05:06 Muirhead wrote:
Just work out some small cases like n=3, k=2 and you'll see what I mean


No I don't see what you mean and you should read my response to your logic like I did yours. Either prove me wrong or defend your logic; simple.

Having said that, can we focus on the correct solution to this problem now?
qrs
Profile Blog Joined December 2007
United States3637 Posts
Last Edited: 2009-05-14 21:15:12
May 14 2009 20:42 GMT
#15
Didn't look at the other answers yet, so I'm probably duplicating something that someone has said.
+ Show Spoiler +
Let's call the matchboxes Head and Tail and count the number of ways to make n selections from each box. That would be (2n)!(/n!n!).

Now let's count the number of ways to make n selections from each box, where the last k selections are all "heads". That's easy: we just remove k heads from the scenario, and one "tail" (for the last match picked from Tail) and count how many ways there are to arrange the remainder. That would be (n-k + n-1)!/(n-k)!(n-1)! By symmetry, it's the same number for the case where the last k are tails.

So dividing the number of cases we are looking for by the number of possible cases, we get the probability:

2*[(2n - k - 1)! * n! * n! ]/ [2n! * (n - k)! * (n-1)!]

We can simplify that a little bit, at least:

2*[(2n - k - 1)! * n! * (n-1)]/ [2n! * (n - k)!]

I don't know if there is a way to simplify it further.

PS: the formula breaks down when k = 0. That's the only case where the specification "first box to empty" makes a difference. In every other case, we guarantee that the box we are looking at empties first by making k of its matches the last to be chosen, but when k=0, of course, that doesn't work. For that case, I'll have to just specify separately that f(0) = 0, since there is no way to finish both boxes at the same time while picking one match at a time. I wonder if anyone's formula was general enough to encompass that case.

Muirhead, your answer is (partly) wrong on a technicality...
'As per the American Heart Association, the beat of the Bee Gees song "Stayin' Alive" provides an ideal rhythm in terms of beats per minute to use for hands-only CPR. One can also hum Queen's "Another One Bites The Dust".' —Wikipedia
aznmathfreak
Profile Joined March 2009
United States148 Posts
Last Edited: 2009-05-14 21:07:24
May 14 2009 20:54 GMT
#16
The person had to have picked 2n-k+1 times. n times from the empty box of matches and n-k times from the box of matches with k matches left, and the +1 is from the last time the person picks and ends up picking out the empty box.

Assuming that either box has equal chance of being picked. Each time he picks, he has a 1/2 chance of picking a certain box, either box A or box B. Let's ignore the order that he picks for a second. He has to pick box A n+1 times and box B n-k times. Each one's odd of being picked is 1/2. Therefore, the chance of him picking that is (1/2)^(n+1) x (1/2)^(n-k), or... (1/2)^(2n-k+1).

Now, if we factor in the order. Since it doesn't matter which order the matches are picked, so long as the last pick was the empty box, we can think of it as out of 2n-k picks, we have to pick n of which are from box A. So it's a combination of 2n-k picks, n of which has to be from box A. There are (2n-k C n) ways to pick it.

Therefore the solution is
(2n-k C n) x (1/2)^(2n-k+1)

Edit: If you switch box A and box B, you have another set of symmetrical cases that would also satisfy the conditions,

So there is a factor of 2 like Muir suggested earlier.

2(2n-k C n) x (1/2)^(2n-k+1) or (2n-k C n) x (1/2)^(2n-k)
qrs
Profile Blog Joined December 2007
United States3637 Posts
Last Edited: 2009-05-14 20:58:51
May 14 2009 20:58 GMT
#17
On May 15 2009 05:11 Macavenger wrote:
+ Show Spoiler +
The way I read it, he pulls a box out (I assume when he needs another match) and finds it was already empty; that the last match must have come from that box is not specified. For all we know, he could have just emptied it, or he could have emptied it 2 draws ago, or he could have pulled the first n matches from that box and then the remaining n-k from the second before discovering the first was empty. Thus, we should be able to choose any n of the 2n-k matches as coming from that box, no?
Ah, that's an interesting point, but unless we assigned some kind of probability function to his absent-mindedness, it would not be possible to give an answer for that case, so since the question was posed as a puzzle, it's probably fair to assume that he discovers that the box is empty as soon as he tries to pull a match from it (or at any rate when his pipe refuses to light).
'As per the American Heart Association, the beat of the Bee Gees song "Stayin' Alive" provides an ideal rhythm in terms of beats per minute to use for hands-only CPR. One can also hum Queen's "Another One Bites The Dust".' —Wikipedia
qrs
Profile Blog Joined December 2007
United States3637 Posts
Last Edited: 2009-05-14 21:49:01
May 14 2009 20:59 GMT
#18
On May 15 2009 05:05 Pliers wrote:
Show nested quote +
On May 15 2009 04:56 Muirhead wrote:
On May 15 2009 04:52 Macavenger wrote:
On May 15 2009 04:08 Muirhead wrote:
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.

+ Show Spoiler +
Where do you get that initial factor of 2 from, and why choosing n-1? Shouldn't you be choosing which n come from the empty box, since if I read the question right, he doesn't know exactly when he emptied it? I feel like it should just be (2n-k C n) * .5^(2n-k)



The factor of 2 comes from the fact that there are two boxes. The n-1 comes from the fact that the box of the (2n-k)th match is fixed.


How is it fixed if it wasn't specified which box he drew it from? All we know is that once he drew the 2n-kth match one of the boxes is empty.

and not before
You are right. I was wrong.
'As per the American Heart Association, the beat of the Bee Gees song "Stayin' Alive" provides an ideal rhythm in terms of beats per minute to use for hands-only CPR. One can also hum Queen's "Another One Bites The Dust".' —Wikipedia
Muirhead
Profile Blog Joined October 2007
United States556 Posts
Last Edited: 2009-05-14 21:30:32
May 14 2009 21:28 GMT
#19
qrs I don't understand what's wrong (except in case k=0 which doesn't make any sense anyways)
The only thing I can see different about your solution is the denominator [2n! * (n - k)! * (n-1)!], but I don't understand this denominator and why it shouldn't just be 1/2^(2n-k) since he has a 50% chance of picking H or T each time.

I still like my solution except when k=0 and it seems to agree with brute force checking of small cases
starleague.mit.edu
qrs
Profile Blog Joined December 2007
United States3637 Posts
Last Edited: 2009-05-14 21:48:12
May 14 2009 21:32 GMT
#20
On May 15 2009 04:08 Muirhead wrote:
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.
On May 15 2009 05:54 aznmathfreak wrote:+ Show Spoiler +

The person had to have picked 2n-k+1 times. n times from the empty box of matches and n-k times from the box of matches with k matches left, and the +1 is from the last time the person picks and ends up picking out the empty box.

Assuming that either box has equal chance of being picked. Each time he picks, he has a 1/2 chance of picking a certain box, either box A or box B. Let's ignore the order that he picks for a second. He has to pick box A n+1 times and box B n-k times. Each one's odd of being picked is 1/2. Therefore, the chance of him picking that is (1/2)^(n+1) x (1/2)^(n-k), or... (1/2)^(2n-k+1).

Now, if we factor in the order. Since it doesn't matter which order the matches are picked, so long as the last pick was the empty box, we can think of it as out of 2n-k picks, we have to pick n of which are from box A. So it's a combination of 2n-k picks, n of which has to be from box A. There are (2n-k C n) ways to pick it.

Therefore the solution is
(2n-k C n) x (1/2)^(2n-k+1)

Edit: If you switch box A and box B, you have another set of symmetrical cases that would also satisfy the conditions,

So there is a factor of 2 like Muir suggested earlier.

2(2n-k C n) x (1/2)^(2n-k+1) or (2n-k C n) x (1/2)^(2n-k)

Interesting, the logic of each of you seems compelling, yet you give different answers. I'm trying to decide which is wrong...

Edit: OK, azn is right. Muirhead and I both overlooked the significance of "(after absentmindedly placing the box back in his pocket after using the last match)"
'As per the American Heart Association, the beat of the Bee Gees song "Stayin' Alive" provides an ideal rhythm in terms of beats per minute to use for hands-only CPR. One can also hum Queen's "Another One Bites The Dust".' —Wikipedia
1 2 Next All
Please log in or register to reply.
Live Events Refresh
Next event in 1h 5m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
Nina 118
StarCraft: Brood War
Sea 3086
ToSsGirL 692
BeSt 627
actioN 327
GoRush 217
Killer 209
Nal_rA 97
Shinee 60
Mong 57
JulyZerg 53
[ Show more ]
Sacsri 30
Sharp 25
Noble 20
sSak 19
EffOrt 19
Bale 10
Dota 2
BananaSlamJamma415
XcaliburYe309
League of Legends
JimRising 475
Counter-Strike
Stewie2K933
shoxiejesuss816
Super Smash Bros
Mew2King211
Heroes of the Storm
Khaldor164
Other Games
shahzam1289
ceh9685
Happy325
rGuardiaN77
DeMusliM63
crisheroes59
SortOf41
Organizations
Other Games
gamesdonequick832
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
Kim Chul Min (afreeca) 0
sctven
[ Show 15 non-featured ]
StarCraft 2
• Berry_CruncH349
• LUISG 18
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• lizZardDota293
League of Legends
• Stunt696
• HappyZerGling78
Upcoming Events
The PondCast
1h 5m
RSL Revival
1h 5m
ByuN vs Classic
Clem vs Cham
WardiTV European League
7h 5m
ByuN vs NightPhoenix
HeRoMaRinE vs HiGhDrA
Krystianer vs sebesdes
MaxPax vs Babymarine
SKillous vs Mixu
ShoWTimE vs MaNa
Replay Cast
15h 5m
RSL Revival
1d 1h
herO vs SHIN
Reynor vs Cure
WardiTV European League
1d 7h
Scarlett vs Percival
Jumy vs ArT
YoungYakov vs Shameless
uThermal vs Fjant
Nicoract vs goblin
Harstem vs Gerald
FEL
1d 7h
Korean StarCraft League
1d 18h
CranKy Ducklings
2 days
RSL Revival
2 days
[ Show More ]
FEL
2 days
Sparkling Tuna Cup
3 days
RSL Revival
3 days
FEL
3 days
BSL: ProLeague
3 days
Dewalt vs Bonyth
Replay Cast
4 days
Replay Cast
5 days
The PondCast
6 days
Replay Cast
6 days
Liquipedia Results

Completed

Proleague 2025-06-28
HSC XXVII
Heroes 10 EU

Ongoing

JPL Season 2
BSL 2v2 Season 3
BSL Season 20
Acropolis #3
KCM Race Survival 2025 Season 2
CSL 17: 2025 SUMMER
Copa Latinoamericana 4
Championship of Russia 2025
RSL Revival: Season 1
Murky Cup #2
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025
PGL Astana 2025
Asian Champions League '25
BLAST Rivals Spring 2025
MESA Nomadic Masters
CCT Season 2 Global Finals
IEM Melbourne 2025
YaLLa Compass Qatar 2025

Upcoming

CSLPRO Last Chance 2025
CSLPRO Chat StarLAN 3
K-Championship
uThermal 2v2 Main Event
SEL Season 2 Championship
FEL Cracov 2025
Esports World Cup 2025
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.