• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EST 07:35
CET 13:35
KST 21:35
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
RSL Revival - 2025 Season Finals Preview5RSL Season 3 - Playoffs Preview0RSL Season 3 - RO16 Groups C & D Preview0RSL Season 3 - RO16 Groups A & B Preview2TL.net Map Contest #21: Winners12
Community News
Weekly Cups (Dec 1-7): Clem doubles, Solar gets over the hump1Weekly Cups (Nov 24-30): MaxPax, Clem, herO win2BGE Stara Zagora 2026 announced15[BSL21] Ro.16 Group Stage (C->B->A->D)4Weekly Cups (Nov 17-23): Solar, MaxPax, Clem win3
StarCraft 2
General
RSL Revival - 2025 Season Finals Preview Weekly Cups (Dec 1-7): Clem doubles, Solar gets over the hump Chinese SC2 server to reopen; live all-star event in Hangzhou Maestros of the Game: Live Finals Preview (RO4) BGE Stara Zagora 2026 announced
Tourneys
RSL Offline Finals Info - Dec 13 and 14! Tenacious Turtle Tussle 2025 RSL Offline Finals Dates + Ticket Sales! Sparkling Tuna Cup - Weekly Open Tournament StarCraft2.fi 15th Anniversary Cup
Strategy
Custom Maps
Map Editor closed ?
External Content
Mutation # 503 Fowl Play Mutation # 502 Negative Reinforcement Mutation # 501 Price of Progress Mutation # 500 Fright night
Brood War
General
FlaSh on: Biggest Problem With SnOw's Playstyle BGH Auto Balance -> http://bghmmr.eu/ [BSL21] RO8 Bracket & Prediction Contest BW General Discussion Let's talk about Metropolis
Tourneys
[ASL20] Grand Finals [BSL21] RO8 - Day 2 - Sunday 21:00 CET [BSL21] RO8 - Day 1 - Saturday 21:00 CET Small VOD Thread 2.0
Strategy
Simple Questions, Simple Answers Fighting Spirit mining rates Current Meta Game Theory for Starcraft
Other Games
General Games
Dawn of War IV Path of Exile Stormgate/Frost Giant Megathread Awesome Games Done Quick 2026! Nintendo Switch Thread
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
Mafia Game Mode Feedback/Ideas Survivor II: The Amazon Sengoku Mafia TL Mafia Community Thread
Community
General
Things Aren’t Peaceful in Palestine US Politics Mega-thread Russo-Ukrainian War Thread YouTube Thread European Politico-economics QA Mega-thread
Fan Clubs
White-Ra Fan Club
Media & Entertainment
Anime Discussion Thread [Manga] One Piece Movie Discussion!
Sports
Formula 1 Discussion 2024 - 2026 Football Thread
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
TL+ Announced Where to ask questions and add stream?
Blogs
How Sleep Deprivation Affect…
TrAiDoS
I decided to write a webnov…
DjKniteX
James Bond movies ranking - pa…
Topin
Thanks for the RSL
Hildegard
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1665 users

Difficult Math Puzzle !

Blogs > kdog3683
Post a Reply
1 2 Next All
kdog3683
Profile Blog Joined January 2007
United States916 Posts
May 14 2009 19:01 GMT
#1
A man buys two boxes of matches and puts them in his pocket. Every time he has to light a match, he selects at random one box or the other. After some time, he takes one of the boxes from his pocket, and finds it is empty (after absentmindedly placing the box back in his pocket after using the last match). Supposing that each box originally had n matches, what is the probability that there are now k matches in the other box? (Here, 0 ≤ k ≤ n.)

*
Multiply your efforts.
Muirhead
Profile Blog Joined October 2007
United States556 Posts
Last Edited: 2009-05-14 19:24:08
May 14 2009 19:08 GMT
#2
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.
starleague.mit.edu
Fontong
Profile Blog Joined December 2007
United States6454 Posts
May 14 2009 19:12 GMT
#3
I'm assuming Difficult Math Puzzle = Homework Problem that you need help solving?
[SECRET FONT] "Dragoon bunker"
Deleted User 3420
Profile Blog Joined May 2003
24492 Posts
Last Edited: 2009-05-14 19:12:45
May 14 2009 19:12 GMT
#4
lol math is confusing!
im curious how this will be answered
it seems like it might be easier than a couple of the other ones lately, tho
Jonoman92
Profile Blog Joined September 2006
United States9104 Posts
May 14 2009 19:27 GMT
#5
Yea I'd like to see the solution and hear the logic but I'm not quite sure how to do it myself.
naonao
Profile Blog Joined November 2008
United States847 Posts
May 14 2009 19:47 GMT
#6
+ Show Spoiler +
1-(1/2)^n
since having k<n only means that at least 1 match was pulled out of the other box. Then (1/2)^n is the probability that all of the matches were pulled from one box, which is the only possible way for k >= n. So you subtract it from 1 to find the probability of k<n
Pliers
Profile Joined October 2008
Canada42 Posts
Last Edited: 2009-05-14 19:50:05
May 14 2009 19:49 GMT
#7
On May 15 2009 04:08 Muirhead wrote:
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.


Not sure If I agree with you. (1/2)^(2n-k) I think you're assuming that for every match drawn till 2n-k you would have 1/2 probability for the matches in either box however when a match is drawn it is not replaced therefore the probability changes. Not sure how you have (2n-k-1 C n-1) since the OP asked what the probability of the box having k matches left when the other box is empty.

My logic is one box must run out therefore there is 2 choose 1 boxes and n choose n matches for one of the boxes and n choose n-k for the other. While the total probably is 2n choose 2n-k giving:

[2*1*(n C n-k)]/(2n C 2n-k)
Muirhead
Profile Blog Joined October 2007
United States556 Posts
May 14 2009 19:51 GMT
#8
Yes the question depends on if matches are selected at random or boxes are selected at random. I assume from his wording that he meant the latter.
starleague.mit.edu
Macavenger
Profile Blog Joined January 2008
United States1132 Posts
Last Edited: 2009-05-14 19:55:09
May 14 2009 19:52 GMT
#9
On May 15 2009 04:08 Muirhead wrote:
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.

+ Show Spoiler +
Where do you get that initial factor of 2 from, and why choosing n-1? Shouldn't you be choosing which n come from the empty box, since if I read the question right, he doesn't know exactly when he emptied it? I feel like it should just be (2n-k C n) * .5^(2n-k)

Edit: Oh, the 2 comes from the fact that he could be pulling either box to find empty I guess?
Muirhead
Profile Blog Joined October 2007
United States556 Posts
May 14 2009 19:56 GMT
#10
On May 15 2009 04:52 Macavenger wrote:
Show nested quote +
On May 15 2009 04:08 Muirhead wrote:
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.

+ Show Spoiler +
Where do you get that initial factor of 2 from, and why choosing n-1? Shouldn't you be choosing which n come from the empty box, since if I read the question right, he doesn't know exactly when he emptied it? I feel like it should just be (2n-k C n) * .5^(2n-k)



+ Show Spoiler +
The factor of 2 comes from the fact that there are two boxes. The n-1 comes from the fact that the box of the (2n-k)th match is fixed.
starleague.mit.edu
Pliers
Profile Joined October 2008
Canada42 Posts
May 14 2009 20:05 GMT
#11
On May 15 2009 04:56 Muirhead wrote:
Show nested quote +
On May 15 2009 04:52 Macavenger wrote:
On May 15 2009 04:08 Muirhead wrote:
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.

+ Show Spoiler +
Where do you get that initial factor of 2 from, and why choosing n-1? Shouldn't you be choosing which n come from the empty box, since if I read the question right, he doesn't know exactly when he emptied it? I feel like it should just be (2n-k C n) * .5^(2n-k)



The factor of 2 comes from the fact that there are two boxes. The n-1 comes from the fact that the box of the (2n-k)th match is fixed.


How is it fixed if it wasn't specified which box he drew it from? All we know is that once he drew the 2n-kth match one of the boxes is empty.
Muirhead
Profile Blog Joined October 2007
United States556 Posts
May 14 2009 20:06 GMT
#12
Just work out some small cases like n=3, k=2 and you'll see what I mean
starleague.mit.edu
Macavenger
Profile Blog Joined January 2008
United States1132 Posts
May 14 2009 20:11 GMT
#13
On May 15 2009 04:56 Muirhead wrote:
Show nested quote +
On May 15 2009 04:52 Macavenger wrote:
On May 15 2009 04:08 Muirhead wrote:
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.

+ Show Spoiler +
Where do you get that initial factor of 2 from, and why choosing n-1? Shouldn't you be choosing which n come from the empty box, since if I read the question right, he doesn't know exactly when he emptied it? I feel like it should just be (2n-k C n) * .5^(2n-k)



+ Show Spoiler +
The factor of 2 comes from the fact that there are two boxes. The n-1 comes from the fact that the box of the (2n-k)th match is fixed.

+ Show Spoiler +
I don't see how the (2n-k)th match is fixed according to the problem statement, though. The way I read it, he pulls a box out (I assume when he needs another match) and finds it was already empty; that the last match must have come from that box is not specified. For all we know, he could have just emptied it, or he could have emptied it 2 draws ago, or he could have pulled the first n matches from that box and then the remaining n-k from the second before discovering the first was empty. Thus, we should be able to choose any n of the 2n-k matches as coming from that box, no?
Pliers
Profile Joined October 2008
Canada42 Posts
May 14 2009 20:26 GMT
#14
On May 15 2009 05:06 Muirhead wrote:
Just work out some small cases like n=3, k=2 and you'll see what I mean


No I don't see what you mean and you should read my response to your logic like I did yours. Either prove me wrong or defend your logic; simple.

Having said that, can we focus on the correct solution to this problem now?
qrs
Profile Blog Joined December 2007
United States3637 Posts
Last Edited: 2009-05-14 21:15:12
May 14 2009 20:42 GMT
#15
Didn't look at the other answers yet, so I'm probably duplicating something that someone has said.
+ Show Spoiler +
Let's call the matchboxes Head and Tail and count the number of ways to make n selections from each box. That would be (2n)!(/n!n!).

Now let's count the number of ways to make n selections from each box, where the last k selections are all "heads". That's easy: we just remove k heads from the scenario, and one "tail" (for the last match picked from Tail) and count how many ways there are to arrange the remainder. That would be (n-k + n-1)!/(n-k)!(n-1)! By symmetry, it's the same number for the case where the last k are tails.

So dividing the number of cases we are looking for by the number of possible cases, we get the probability:

2*[(2n - k - 1)! * n! * n! ]/ [2n! * (n - k)! * (n-1)!]

We can simplify that a little bit, at least:

2*[(2n - k - 1)! * n! * (n-1)]/ [2n! * (n - k)!]

I don't know if there is a way to simplify it further.

PS: the formula breaks down when k = 0. That's the only case where the specification "first box to empty" makes a difference. In every other case, we guarantee that the box we are looking at empties first by making k of its matches the last to be chosen, but when k=0, of course, that doesn't work. For that case, I'll have to just specify separately that f(0) = 0, since there is no way to finish both boxes at the same time while picking one match at a time. I wonder if anyone's formula was general enough to encompass that case.

Muirhead, your answer is (partly) wrong on a technicality...
'As per the American Heart Association, the beat of the Bee Gees song "Stayin' Alive" provides an ideal rhythm in terms of beats per minute to use for hands-only CPR. One can also hum Queen's "Another One Bites The Dust".' —Wikipedia
aznmathfreak
Profile Joined March 2009
United States148 Posts
Last Edited: 2009-05-14 21:07:24
May 14 2009 20:54 GMT
#16
The person had to have picked 2n-k+1 times. n times from the empty box of matches and n-k times from the box of matches with k matches left, and the +1 is from the last time the person picks and ends up picking out the empty box.

Assuming that either box has equal chance of being picked. Each time he picks, he has a 1/2 chance of picking a certain box, either box A or box B. Let's ignore the order that he picks for a second. He has to pick box A n+1 times and box B n-k times. Each one's odd of being picked is 1/2. Therefore, the chance of him picking that is (1/2)^(n+1) x (1/2)^(n-k), or... (1/2)^(2n-k+1).

Now, if we factor in the order. Since it doesn't matter which order the matches are picked, so long as the last pick was the empty box, we can think of it as out of 2n-k picks, we have to pick n of which are from box A. So it's a combination of 2n-k picks, n of which has to be from box A. There are (2n-k C n) ways to pick it.

Therefore the solution is
(2n-k C n) x (1/2)^(2n-k+1)

Edit: If you switch box A and box B, you have another set of symmetrical cases that would also satisfy the conditions,

So there is a factor of 2 like Muir suggested earlier.

2(2n-k C n) x (1/2)^(2n-k+1) or (2n-k C n) x (1/2)^(2n-k)
qrs
Profile Blog Joined December 2007
United States3637 Posts
Last Edited: 2009-05-14 20:58:51
May 14 2009 20:58 GMT
#17
On May 15 2009 05:11 Macavenger wrote:
+ Show Spoiler +
The way I read it, he pulls a box out (I assume when he needs another match) and finds it was already empty; that the last match must have come from that box is not specified. For all we know, he could have just emptied it, or he could have emptied it 2 draws ago, or he could have pulled the first n matches from that box and then the remaining n-k from the second before discovering the first was empty. Thus, we should be able to choose any n of the 2n-k matches as coming from that box, no?
Ah, that's an interesting point, but unless we assigned some kind of probability function to his absent-mindedness, it would not be possible to give an answer for that case, so since the question was posed as a puzzle, it's probably fair to assume that he discovers that the box is empty as soon as he tries to pull a match from it (or at any rate when his pipe refuses to light).
'As per the American Heart Association, the beat of the Bee Gees song "Stayin' Alive" provides an ideal rhythm in terms of beats per minute to use for hands-only CPR. One can also hum Queen's "Another One Bites The Dust".' —Wikipedia
qrs
Profile Blog Joined December 2007
United States3637 Posts
Last Edited: 2009-05-14 21:49:01
May 14 2009 20:59 GMT
#18
On May 15 2009 05:05 Pliers wrote:
Show nested quote +
On May 15 2009 04:56 Muirhead wrote:
On May 15 2009 04:52 Macavenger wrote:
On May 15 2009 04:08 Muirhead wrote:
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.

+ Show Spoiler +
Where do you get that initial factor of 2 from, and why choosing n-1? Shouldn't you be choosing which n come from the empty box, since if I read the question right, he doesn't know exactly when he emptied it? I feel like it should just be (2n-k C n) * .5^(2n-k)



The factor of 2 comes from the fact that there are two boxes. The n-1 comes from the fact that the box of the (2n-k)th match is fixed.


How is it fixed if it wasn't specified which box he drew it from? All we know is that once he drew the 2n-kth match one of the boxes is empty.

and not before
You are right. I was wrong.
'As per the American Heart Association, the beat of the Bee Gees song "Stayin' Alive" provides an ideal rhythm in terms of beats per minute to use for hands-only CPR. One can also hum Queen's "Another One Bites The Dust".' —Wikipedia
Muirhead
Profile Blog Joined October 2007
United States556 Posts
Last Edited: 2009-05-14 21:30:32
May 14 2009 21:28 GMT
#19
qrs I don't understand what's wrong (except in case k=0 which doesn't make any sense anyways)
The only thing I can see different about your solution is the denominator [2n! * (n - k)! * (n-1)!], but I don't understand this denominator and why it shouldn't just be 1/2^(2n-k) since he has a 50% chance of picking H or T each time.

I still like my solution except when k=0 and it seems to agree with brute force checking of small cases
starleague.mit.edu
qrs
Profile Blog Joined December 2007
United States3637 Posts
Last Edited: 2009-05-14 21:48:12
May 14 2009 21:32 GMT
#20
On May 15 2009 04:08 Muirhead wrote:
+ Show Spoiler +
2*(2n-k-1 C n-1)*(1/2)^(2n-k)

From the first 2n-k-1 matches pulled, you must choose which n-1 are pulled from the box that first runs out.
On May 15 2009 05:54 aznmathfreak wrote:+ Show Spoiler +

The person had to have picked 2n-k+1 times. n times from the empty box of matches and n-k times from the box of matches with k matches left, and the +1 is from the last time the person picks and ends up picking out the empty box.

Assuming that either box has equal chance of being picked. Each time he picks, he has a 1/2 chance of picking a certain box, either box A or box B. Let's ignore the order that he picks for a second. He has to pick box A n+1 times and box B n-k times. Each one's odd of being picked is 1/2. Therefore, the chance of him picking that is (1/2)^(n+1) x (1/2)^(n-k), or... (1/2)^(2n-k+1).

Now, if we factor in the order. Since it doesn't matter which order the matches are picked, so long as the last pick was the empty box, we can think of it as out of 2n-k picks, we have to pick n of which are from box A. So it's a combination of 2n-k picks, n of which has to be from box A. There are (2n-k C n) ways to pick it.

Therefore the solution is
(2n-k C n) x (1/2)^(2n-k+1)

Edit: If you switch box A and box B, you have another set of symmetrical cases that would also satisfy the conditions,

So there is a factor of 2 like Muir suggested earlier.

2(2n-k C n) x (1/2)^(2n-k+1) or (2n-k C n) x (1/2)^(2n-k)

Interesting, the logic of each of you seems compelling, yet you give different answers. I'm trying to decide which is wrong...

Edit: OK, azn is right. Muirhead and I both overlooked the significance of "(after absentmindedly placing the box back in his pocket after using the last match)"
'As per the American Heart Association, the beat of the Bee Gees song "Stayin' Alive" provides an ideal rhythm in terms of beats per minute to use for hands-only CPR. One can also hum Queen's "Another One Bites The Dust".' —Wikipedia
1 2 Next All
Please log in or register to reply.
Live Events Refresh
StarCraft2.fi
10:00
15V Cup / Offline Finals
starcraft2fi 275
LiquipediaDiscussion
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
Lowko440
StarCraft: Brood War
Britney 29059
Horang2 2064
Jaedong 1271
Mini 639
Stork 482
BeSt 435
Light 390
Killer 344
firebathero 266
Last 241
[ Show more ]
Hyun 213
Rush 167
EffOrt 166
Larva 127
hero 115
Mind 80
Leta 68
Mong 55
sorry 42
Aegong 34
ToSsGirL 32
yabsab 29
soO 25
Movie 23
Bale 18
Sacsri 14
Shine 13
Dota 2
Gorgc5239
singsing3325
XcaliburYe360
canceldota118
League of Legends
C9.Mang0378
rGuardiaN58
Counter-Strike
edward159
oskar124
Heroes of the Storm
Khaldor213
Other Games
Grubby2578
FrodaN2336
B2W.Neo1358
Hui .193
XaKoH 131
KnowMe119
Mew2King52
MindelVK10
Trikslyr9
Organizations
Other Games
gamesdonequick685
StarCraft 2
ComeBackTV 466
StarCraft: Brood War
lovetv 10
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 16 non-featured ]
StarCraft 2
• Berry_CruncH179
• intothetv
• IndyKCrew
• sooper7s
• AfreecaTV YouTube
• Migwel
• LaughNgamezSOOP
• Kozan
StarCraft: Brood War
• STPLYoutube
• ZZZeroYoutube
• BSLYoutube
Dota 2
• WagamamaTV112
• lizZardDota282
League of Legends
• Jankos3426
• Stunt726
Other Games
• Scarra777
Upcoming Events
IPSL
4h 25m
Sziky vs JDConan
OSC
4h 25m
Solar vs Percival
Gerald vs Nicoract
Creator vs ByuN
BSL 21
7h 25m
Sziky vs StRyKeR
Hawk vs Dewalt
RSL Revival
15h 55m
Classic vs TBD
herO vs Zoun
WardiTV 2025
1d
herO vs ShoWTimE
SHIN vs herO
Clem vs herO
SHIN vs Clem
SHIN vs ShoWTimE
Clem vs ShoWTimE
IPSL
1d 4h
Tarson vs DragOn
BSL 21
1d 7h
Tech vs Cross
Bonyth vs eOnzErG
Replay Cast
1d 20h
Wardi Open
1d 23h
Monday Night Weeklies
2 days
[ Show More ]
Sparkling Tuna Cup
2 days
Replay Cast
4 days
The PondCast
4 days
CranKy Ducklings
6 days
SC Evo League
6 days
Liquipedia Results

Completed

Acropolis #4 - TS3
RSL Revival: Season 3
Kuram Kup

Ongoing

IPSL Winter 2025-26
KCM Race Survival 2025 Season 4
YSL S2
BSL Season 21
Slon Tour Season 2
WardiTV 2025
RSL Offline Finals
META Madness #9
SL Budapest Major 2025
ESL Impact League Season 8
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025
Thunderpick World Champ.
CS Asia Championships 2025
ESL Pro League S22

Upcoming

BSL 21 Non-Korean Championship
Acropolis #4
IPSL Spring 2026
Bellum Gens Elite Stara Zagora 2026
HSC XXVIII
Big Gabe Cup #3
PGL Cluj-Napoca 2026
IEM Kraków 2026
BLAST Bounty Winter 2026
BLAST Bounty Winter Qual
eXTREMESLAND 2025
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.