• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 22:26
CEST 04:26
KST 11:26
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
Power Rank - Esports World Cup 202530RSL Season 1 - Final Week8[ASL19] Finals Recap: Standing Tall15HomeStory Cup 27 - Info & Preview18Classic wins Code S Season 2 (2025)16
Community News
BSL Team Wars - Bonyth, Dewalt, Hawk & Sziky teams2Weekly Cups (July 14-20): Final Check-up0Esports World Cup 2025 - Brackets Revealed19Weekly Cups (July 7-13): Classic continues to roll8Team TLMC #5 - Submission re-extension4
StarCraft 2
General
RSL Revival patreon money discussion thread Power Rank - Esports World Cup 2025 The GOAT ranking of GOAT rankings Esports World Cup 2025 - Final Player Roster Why doesnt SC2 scene costream tournaments
Tourneys
Esports World Cup 2025 Sparkling Tuna Cup - Weekly Open Tournament Sea Duckling Open (Global, Bronze-Diamond) FEL Cracov 2025 (July 27) - $8000 live event RSL: Revival, a new crowdfunded tournament series
Strategy
How did i lose this ZvP, whats the proper response
Custom Maps
External Content
Mutation # 483 Kill Bot Wars Mutation # 482 Wheel of Misfortune Mutation # 481 Fear and Lava Mutation # 480 Moths to the Flame
Brood War
General
BSL Team Wars - Bonyth, Dewalt, Hawk & Sziky teams BW General Discussion BGH Auto Balance -> http://bghmmr.eu/ Flash Announces (and Retracts) Hiatus From ASL Corsair Pursuit Micro?
Tourneys
[CSLPRO] It's CSLAN Season! - Last Chance [Megathread] Daily Proleagues [BSL 2v2] ProLeague Season 3 - Friday 21:00 CET The Casual Games of the Week Thread
Strategy
Simple Questions, Simple Answers I am doing this better than progamers do.
Other Games
General Games
Nintendo Switch Thread Stormgate/Frost Giant Megathread [MMORPG] Tree of Savior (Successor of Ragnarok) Path of Exile CCLP - Command & Conquer League Project
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
Things Aren’t Peaceful in Palestine US Politics Mega-thread Russo-Ukrainian War Thread The Games Industry And ATVI Stop Killing Games - European Citizens Initiative
Fan Clubs
SKT1 Classic Fan Club! Maru Fan Club
Media & Entertainment
[\m/] Heavy Metal Thread Anime Discussion Thread Movie Discussion! [Manga] One Piece Korean Music Discussion
Sports
2024 - 2025 Football Thread Formula 1 Discussion TeamLiquid Health and Fitness Initiative For 2023 NBA General Discussion
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
The Automated Ban List
Blogs
Ping To Win? Pings And Their…
TrAiDoS
momentary artworks from des…
tankgirl
from making sc maps to makin…
Husyelt
StarCraft improvement
iopq
Socialism Anyone?
GreenHorizons
Customize Sidebar...

Website Feedback

Closed Threads



Active: 601 users

Really hard puzzle 2

Blogs > gondolin
Post a Reply
Normal
gondolin
Profile Blog Joined September 2007
France332 Posts
May 12 2009 13:23 GMT
#1
Hello everyone, and welcome to my first blog.

This blog is meant to be the following of a blog post by driftOut:
http://www.teamliquid.net/blogs/viewblog.php?topic_id=93007
about a very nice puzzle.

The solution uses equivalence choice, and evanthebouncy! made an excellent didactic course about it here:
http://www.teamliquid.net/blogs/viewblog.php?topic_id=93015

Now if you were interested in the first puzzle, i'll propose you one that is even harder, and even more impressive. Feel free to ask questions if the problem is not stated clearly enough.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You are playing a game. In this game there is an infinite (countable) number of boxes, and in each box a number. The host is free to place any number inside a box (and he can place the same numbers into different boxes).

You can open as many boxes as you want (even infinitely many), as long as you leave at least one box closed. You then state the number you think there is inside a closed box. You win if you guessed the right number.

How do you play?
What i pretend is that for every n>0, you have a strategy so that your probability of success is greater than 1-1/n!
In other word you can't always win (duh!) but you have a strategy that gives you 999 999/ 1 000 000 chances to win!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Tell me what you think about it!

*****
Turbovolver
Profile Blog Joined January 2009
Australia2394 Posts
May 12 2009 13:26 GMT
#2
Umm, if the host is free to put any number in a box, and repeat at will, what does it matter what was in the other boxes?

Seems like all the events are independent and your chance to win is unaffected by how many boxes you open before.

I guess I'm missing something =/
The original Bogus fan.
gondolin
Profile Blog Joined September 2007
France332 Posts
May 12 2009 13:46 GMT
#3
Yes it's confusing, and counter-intuitive, but it's because we are dealing with an infinite number of boxes, hence our "intuition" does not apply. It's not like it could happen in real life I agree that if the number of boxes were finite, there is no way you could win.

So the host puts all the numbers in the boxes *before* you open them. He is not allowed to change them afterwards. He does not know which box you will choose to leave closed, and remember that you can open all the boxes except one.
Chromyne
Profile Joined January 2008
Canada561 Posts
May 12 2009 14:16 GMT
#4
My friend wants to clarify what you mean by any number: integers, real numbers, etc. He's saying that the set determines whether the numbers are countable-infinite or not.
Soli Deo gloria.
gondolin
Profile Blog Joined September 2007
France332 Posts
May 12 2009 14:24 GMT
#5
By number i mean an integer, that is an element in the set {0,1,2,3,...}.
so if you count, the ways the host can set up the boxes is N^N, which is not countable.

(that is, if you number the boxes, you have a sequence that to the box number n associates the integer inside it. Then every sequence is possible, and you have no information about how the host will choose is sequence).


Muirhead
Profile Blog Joined October 2007
United States556 Posts
Last Edited: 2009-05-12 14:44:20
May 12 2009 14:42 GMT
#6
This question is very ill-defined. What do you mean by probability? There is no random probability distribution for assigning (non-negative) integers to boxes. Also, if we leave two boxes closed and guess a number in one of them, do we have to state which of the two boxes we think that number is inside of?
starleague.mit.edu
gondolin
Profile Blog Joined September 2007
France332 Posts
May 12 2009 14:54 GMT
#7
On May 12 2009 23:42 Muirhead wrote:
This question is very ill-defined. What do you mean by probability? There is no random probability distribution for assigning (non-negative) integers to boxes.


Yes i know. But i did not want to be too formal.

The correct way is this: for any n>0, you can devise n strategies, such that n-1 of them will succeed (but you don't know which may not succeed of course). (since n is finite, you can speak about the probability you will choose a winning strategy).


Also, if we leave two boxes closed and guess a number in one of them, do we have to state which of the two boxes we think that number is inside of?


Yes. Sorry if that wasn't clear.
Mogwai
Profile Blog Joined January 2009
United States13274 Posts
May 12 2009 15:07 GMT
#8
please define n

is that how many boxes you are opening?
mogwaismusings.wordpress.com
Malongo
Profile Blog Joined November 2005
Chile3472 Posts
Last Edited: 2009-05-12 15:40:39
May 12 2009 15:30 GMT
#9
Basically I realize I dont understand anything about the problem. Questions:
1- That about opening and closing box does something in the game?
2- You meant to solve the problem in terms of n. What is n?
3- Numbers in boxes are integers? rational? real? complex?
Help me! im still improving my English. An eye for an eye makes the whole world blind. M. G.
Mogwai
Profile Blog Joined January 2009
United States13274 Posts
May 12 2009 15:34 GMT
#10
it's N ^ N not N x N

I honestly don't remember my combinatorics well enough to tell you if N ^ N for a countably infinite N is uncountable or countable, but I'll take the OP's word that N ^ N is uncountable...
mogwaismusings.wordpress.com
Malongo
Profile Blog Joined November 2005
Chile3472 Posts
May 12 2009 15:41 GMT
#11
Damn edit slow. Anyways im almost sure but now im doubting.
Help me! im still improving my English. An eye for an eye makes the whole world blind. M. G.
Malongo
Profile Blog Joined November 2005
Chile3472 Posts
May 12 2009 15:44 GMT
#12
yeah just remembered NxNxN..xN is countable for any number of ns but N^N doesnt.
Help me! im still improving my English. An eye for an eye makes the whole world blind. M. G.
HeaDStrong
Profile Blog Joined January 2009
Scotland785 Posts
May 12 2009 15:45 GMT
#13
+ Show Spoiler +

the answer is 19. it's always 19. ez .. it must be...
gondolin
Profile Blog Joined September 2007
France332 Posts
May 12 2009 15:55 GMT
#14
On May 13 2009 00:07 Mogwai wrote:
please define n

is that how many boxes you are opening?


Ok i can explain a bit more how the strategy works (it is an insanely hard problem anyway), but it would be nice if some peoples would give strategies, even if they don't work.

Let n be an integer > 1.
You split the boxes in n column.
You select a special column x, were you will leave a box closed. You open the boxes in every other column, and use that information to know what box you will leave closed in the column you have chosen.

What i pretend is that there is a way to choose the closed box and the number you announce in thus a way that for any column x you have chosen at the beginning *except one*, you will win.
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
May 12 2009 16:02 GMT
#15
Err let's seee...

I suppose we make functions again, let's call them f_1, f_2, f_3...
f_1(1) = number in box 1
f_1(2) = number in box 2
f_1(3) = number in box 3
and so on.

The total number of functions I suppose, are N^N.

I guess we can ask these questions, if u guys want to help me answer them:
Take all these functions, put them into a set, call it F.
is F complete?
if we think of each element in F as a vector of size NxN, can we find a "basis" of some sort for F?
is there a "standard" basis for F?
how do we "project" in F?

Suppose we could answer yes to all of the above questions, then we let g_1, g_2, g_3 ... to be our basis
Project our function vector, f_something, onto those g_1, g_2, g_3 ...
See if we get it to converge to something fancy...
O_o
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
May 12 2009 16:06 GMT
#16
some random intuition
[image loading]
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
gondolin
Profile Blog Joined September 2007
France332 Posts
May 12 2009 16:07 GMT
#17
On May 13 2009 00:30 Malongo wrote:
Basically I realize I dont understand anything about the problem. Questions:


Yeah it is quite a hard problem to state correctly, without being too formal. I don't want to scare everyone :/


1- That about opening and closing box does something in the game?


When a box is closed, you don't see the number inside it. You have to open it if you want to know which number there was. You can open as many boxes you want, in the order you want, you just have to leave at least one closed. Then you pick a closed box, announce the number in it, and you win if you were right.


2- You meant to solve the problem in terms of n. What is n?


You choose it yourself. For any n you can construct n strategies. All of them will work except one. If you choose the strategy at random, you have 1/n chances of picking the bad strategy.
So say you want to win with probability 999999/1000000, you take n=1000000, you construct your n strategies, pick one at random, and voila.


3- Numbers in boxes are integers? rational? real? complex?


Integers.

+ Show Spoiler +
Don't read this, this is more confusing than anything.

Since the rationnal are countable, you can play with rationnals too. In fact you could even play with reals or complex, but the problem is that you would have to speak infinitely long to define the real entirely (ok in real life there won't be infinitely many boxes, and you would take infinitely long to open them all minus one anyway...)
qrs
Profile Blog Joined December 2007
United States3637 Posts
Last Edited: 2009-05-12 16:24:31
May 12 2009 16:24 GMT
#18
My intuition is failing me on this one. She says that this is not possible. Let me try spelling out what my problem is, and perhaps someone can tell me where I am erring:

I can conceive of being able to make an "educated guess" in some circumstances. For instance, suppose that you open all boxes but one, and each contains a 9. Then it seems likely that the remaining one contains a 9 as well. (This would certainly be true for very large finite numbers, although infinities are harder to reason about intuitively.)

However, suppose the host uses a strategy designed to prevent any box from shedding light on any of the others. I suppose that the host is capable of picking truly random numbers (i.e. effective probability 0 of picking any given number). Then let him select the numbers as follows.

1) Number the boxes (since they are countable).
2) Select a random number and place it in the first box.
2) Select a random number that has not been used yet and place it in the second box.
3) and so on until all boxes are filled (obviously it's not really an iterative process).
4) Throw out the even boxes.

Now, even if you know the contents of all boxes but one, all you know is an infinite set of numbers that cannot be in the last box. But by step 4, there is guaranteed to be an infinite set of numbers that you have not seen: one of them must be in the box and any of them can be in the box, since the selection was truly random. How can your knowledge of the other boxes help you in any way with this problem, which is essentially to guess a single number from an infinite set?

(I suspect that you may take issue with my assumption of "true randomness". If so, could you be as specific as you can about the host's ability to choose numbers?)
'As per the American Heart Association, the beat of the Bee Gees song "Stayin' Alive" provides an ideal rhythm in terms of beats per minute to use for hands-only CPR. One can also hum Queen's "Another One Bites The Dust".' —Wikipedia
Deleted User 3420
Profile Blog Joined May 2003
24492 Posts
Last Edited: 2009-05-12 17:17:49
May 12 2009 17:06 GMT
#19
this shit is actually answerable?
if there are infinite numbers and infinite boxes I don't see how this is answerable


hell, shouldn't this be unanswerable just given there are infinite numbers?


I don't understand how this could be answerable -.-
gondolin
Profile Blog Joined September 2007
France332 Posts
May 12 2009 17:08 GMT
#20
On May 13 2009 01:24 qrs wrote:
My intuition is failing me on this one. She says that this is not possible. Let me try spelling out what my problem is, and perhaps someone can tell me where I am erring:


Yes, it is quite counter intuitive, because we are dealing with infinites.


I can conceive of being able to make an "educated guess" in some circumstances. For instance, suppose that you open all boxes but one, and each contains a 9. Then it seems likely that the remaining one contains a 9 as well. (This would certainly be true for very large finite numbers, although infinities are harder to reason about intuitively.)


Well it depends. If you select uniformly a number in [0, 10^n[, then even if (n-1) digits are equals to 9, the remaining one is uniform in [0,9].


(I suspect that you may take issue with my assumption of "true randomness". If so, could you be as specific as you can about the host's ability to choose numbers?)


Well, yes there is no true probability on the whole N, but the true problem is that there is an infinite number of boxes, and the player can choose the box he will guess according to what he sees. What the host choose is a sequence of integers, and he can choose any sequence (even a non calculable one).

Suppose to simplify that the numbers are restricted to be {0,1}. Now say that your strategy is "whatever i see, i pick the box 42 and announce 0". You can't really know your probability of success because it depends how the host chose the sequence. Let's say you identify the sequences with value on {0,1} with the set [0,1] (by taking the diadic decimal reprensentation of a number, ignore the fact that 1=0.111111111). If the host take is number x in [0,1] uniformly with respect to the lebesgue measure, then your strategy has 1/2 chance to win. But here you chose in advance what box you would leave closed, and it's value is independant from the values of the other boxes. So you can't do better like this.

What is worse is that you don't know how the host choose is number. The probability of success i am speaking about does not depend on the way the host choose the number, but on what strategies you decide to use. For instance, suppose that you are sure that number 17, 42 and 54 are 0, except maybe one of them. Then you choose one of them at random, and you have 2/3 chances of winning. This proba does not depend on the original sequence, it's just the losing number that will depend of it.

Of course in practice there is no way you will be sure that 17,42 and 54 are 0, but you can use the fact that you can chose which box you will guess, depending on what you have seen. In the finite case, this would change nothing, but here it is completely different! Hence why the intuition fails.
gondolin
Profile Blog Joined September 2007
France332 Posts
May 12 2009 17:18 GMT
#21
On May 13 2009 02:06 travis wrote:
this shit is actually answerable?


Yup it is. But it's completely counter-intuitive.


hell, shouldn't this be unanswerable just given there are infinite numbers?


If you had a finite number of boxes, there is no way you could win. But you have an infinite number of boxes.



or can number values not exceed total boxes?


No they can be anything.

If you prefer, i can restate the problem like this (i should have done so at the beginning, because i was not clear that the probability of success does not depend on how the host chose the numbers):

construct n strategies, such that all of them win, except one.

For instance, suppose that you know that in box 42 there is a 0 or a 1. Then you have 2 strategies: i announce a 0 in box 42, and i announce a 1 in box 42. If you choose the strategy you use at random, you have 1/2 chance of winning (it does not depend on how the host chose the number he put in box 42). In practice your strategies will be more complicated, like "i open this infinite number of boxes, then from what i see i open this other infinite number, then from what i see, i chose a closed box and announce this number.
gondolin
Profile Blog Joined September 2007
France332 Posts
May 12 2009 17:36 GMT
#22
On May 13 2009 01:02 evanthebouncy! wrote:
I suppose we make functions again, let's call them f_1, f_2, f_3...
f_1(1) = number in box 1
f_1(2) = number in box 2
f_1(3) = number in box 3
and so on.


Yes, that's the idea

I suppose that f_i is the sequence associated to column i? So that if you split your boxes in n column, you have n sequences?


The total number of functions I suppose, are N^N.


Yes, the f_i can be anything in N^N.


I guess we can ask these questions, if u guys want to help me answer them:
Take all these functions, put them into a set, call it F.
is F complete?
if we think of each element in F as a vector of size NxN, can we find a "basis" of some sort for F?
is there a "standard" basis for F?
how do we "project" in F?


- Here i am not following anymore. What is F?
- You just need to use set theory for this puzzle, you don't need to use the structure of vector spaces, or convergent sequences.
Anyway N^N is not a vector space. Now R^N is, but a basis of this space would be uncountable.
- What you can do is define equivalence relations ~ on N^N, then use CHOICE to get a section of N^N -> N^N/~, like was needed for problem 1. (that is to every equivalence class associate a representative).
Deleted User 3420
Profile Blog Joined May 2003
24492 Posts
May 12 2009 17:39 GMT
#23
well then given that u have an infinite number of boxes, why does it matter what number u answer for them

hell, just answer the same number for every box


maybe im still not understanding this though


why does it matter what numbers you saw in previous boxes?
gondolin
Profile Blog Joined September 2007
France332 Posts
May 12 2009 17:55 GMT
#24
On May 13 2009 02:39 travis wrote:
well then given that u have an infinite number of boxes, why does it matter what number u answer for them

hell, just answer the same number for every box


maybe im still not understanding this though


why does it matter what numbers you saw in previous boxes?


No no, you only give *one* answer. But before you give your answer, you can see as many boxes as you wish. Then you choose a closed box, and give an answer.
Muirhead
Profile Blog Joined October 2007
United States556 Posts
May 12 2009 17:59 GMT
#25
This is very interesting. Please don't post anymore clues except in spoilers gondolin. Thanks!
starleague.mit.edu
drift0ut
Profile Blog Joined June 2004
United Kingdom691 Posts
Last Edited: 2009-05-12 18:49:40
May 12 2009 18:48 GMT
#26
so here's another easier puzzle which seams related, i don't know how to solve gondolin's one:

3 of you are at a dinner party and the host has black and white hats again (i love 'em). He gives them to the three guests at random so that you can't see which colour you have on.

Now you have the option to guess the colour you have on, if you or your mates are right, you win, if any of you guess wrong, you lose. If you say nothing, the hats are taken off and new ones are put on.

you can't ever be sure of wining but here's a strat that gets you about 3/4

how to win
+ Show Spoiler +

if you see black black, you guess white, if you see white white, guess black. if you see a mix, pass.

the odds of 3 the same colour is 1/4, hence if you see two the same there's a 3/4 chance you're a different colour.

apparently there's a strat that will give you better than 50% winning even if the host knows what you're doing and tries to counter it. I can't remember the exact statement, maybe he has to not know you know he knows... or something, if not it's sounds really promising.

idea for this puzzle using the same logic
+ Show Spoiler +

assume a random distribution to the numbers and guess your number to balance it? seems rubbish
odave
Profile Joined December 2008
United Kingdom4 Posts
Last Edited: 2009-05-12 21:32:07
May 12 2009 21:18 GMT
#27
On May 13 2009 03:48 drift0ut wrote:
you can't ever be sure of wining but here's a strat that gets you about 3/4

how to win
+ Show Spoiler +

if you see black black, you guess white, if you see white white, guess black. if you see a mix, pass.

the odds of 3 the same colour is 1/4, hence if you see two the same there's a 3/4 chance you're a different colour.



+ Show Spoiler +

I may be misunderstanding the problem, but that doesn't seem right. Even if you see two white hats, the probability of your hat being black is still 1/2 (I'm assuming each hat is chosen by coinflip)... http://en.wikipedia.org/wiki/Conditional_probability


--

I am unconvinced that a (correct) solution to this thread's problem exists (I was unconvinced by the solution to the original problem by drift0ut for a similar reason).

If the host picks the numbers in the boxes by rolling a die, the number in any one box is independent of the numbers in any of the other boxes. So the laws of probability tell us that you have 1/6 probability of getting the answer correct (assuming you pick a number in {1,2,3,4,5,6}) no matter how much prior information you have (from opening other boxes). I don't see how infinities change any of this? An infinite amount of useless information is still useless?
Muirhead
Profile Blog Joined October 2007
United States556 Posts
May 13 2009 00:03 GMT
#28
Haha... I've been talking to a lot of my friends and half of MIT is stuck on this problem now :/
starleague.mit.edu
qrs
Profile Blog Joined December 2007
United States3637 Posts
May 14 2009 01:43 GMT
#29
well if no one is going to give an answer, why not post the solution, gondolin? A lot of us had trouble believing that one could even exist.
'As per the American Heart Association, the beat of the Bee Gees song "Stayin' Alive" provides an ideal rhythm in terms of beats per minute to use for hands-only CPR. One can also hum Queen's "Another One Bites The Dust".' —Wikipedia
Muirhead
Profile Blog Joined October 2007
United States556 Posts
Last Edited: 2009-05-14 05:46:58
May 14 2009 05:41 GMT
#30
Here's a writeup for the case n=2. The general case is quite similar but much more annoying to writeup. Solved by a computer science grad student on my hall.
+ Show Spoiler +

Call two infinite integer sequences equivalent if they differ in finitely many places. We use choice to select a special element from each equivalence class.

Divide the boxes into two infinite columns of boxes, column 1 and column 2. For each finite subset of boxes in column 1, associate a unique box in column 2. We describe two strategies.

Strategy 1: Open all the boxes in column 1. Mark all boxes in column 1 which differ from the special element of column 1's equivalence class. Set aside the box in column 2 associated with the finite collection of marked boxes. Open the rest of the boxes in column 2, and guess that the unopened box has the same number as the special element of the equivalence class of column 2 does in that position.

Strategy 2: Open all boxes in column 2. Mark all boxes which differ from the equivalence class of column 2. For each marked box in column 2, mark the finite set of boxes in column 1 which correspond to that box. Set aside an unmarked box in column 1. Open the rest of the boxes in column 1, and guess that the unopened box has the same number as the special element of the equivalence class of column 1 does in that position.

Flip a coin to select your strategy. If one fails, the other must succeed.
starleague.mit.edu
Monoxide
Profile Blog Joined January 2007
Canada1190 Posts
May 14 2009 06:02 GMT
#31
On May 14 2009 14:41 Muirhead wrote:
Here's a writeup for the case n=2. The general case is quite similar but much more annoying to writeup. Solved by a computer science grad student on my hall.
+ Show Spoiler +

Call two infinite integer sequences equivalent if they differ in finitely many places. We use choice to select a special element from each equivalence class.

Divide the boxes into two infinite columns of boxes, column 1 and column 2. For each finite subset of boxes in column 1, associate a unique box in column 2. We describe two strategies.

Strategy 1: Open all the boxes in column 1. Mark all boxes in column 1 which differ from the special element of column 1's equivalence class. Set aside the box in column 2 associated with the finite collection of marked boxes. Open the rest of the boxes in column 2, and guess that the unopened box has the same number as the special element of the equivalence class of column 2 does in that position.

Strategy 2: Open all boxes in column 2. Mark all boxes which differ from the equivalence class of column 2. For each marked box in column 2, mark the finite set of boxes in column 1 which correspond to that box. Set aside an unmarked box in column 1. Open the rest of the boxes in column 1, and guess that the unopened box has the same number as the special element of the equivalence class of column 1 does in that position.

Flip a coin to select your strategy. If one fails, the other must succeed.



+ Show Spoiler +
wow.. thats only for n=2.... that solution is quite intense.. I had to read it like 5 times.
gondolin
Profile Blog Joined September 2007
France332 Posts
May 14 2009 16:09 GMT
#32
Congrats Muirhead! (by the way since your in MIT, do you know someone called Denis Auroux? I think he is a teaching assistant there, and he comes from the same school as me... I have heard he was quite popular there)

There is a solution a bit simpler:

+ Show Spoiler +

So you choose a choice function s on the sequences modulo cofinite equivalence like you did (the same function as for the hats problem).
You split the boxes into n sequences u1, u2, ..., un.

Now s(u1) is a sequence that is equal to u1 on a cofinite set. This mean there exist A1 such that s(u1)_n = u1_n if n >= A1. Define in the same way the numbers A2, ..., An.

Now you open all the boxes for u1, u2, ..., u(n-1). This allow you to find the numbers A1, ..., A(n-1). You take A=Max(A1, ..., A(n-1)), and you open all the boxes in the sequence un except (un)_A. Now you give s(un)_A as your answer, you win if An<=Max(A1,...,An-1).

So you have n strategies (depending on the column you don't open at the beginning), and only one may fail.

Muirhead
Profile Blog Joined October 2007
United States556 Posts
Last Edited: 2009-05-14 18:29:48
May 14 2009 18:29 GMT
#33
Nice solution!

Yes he is quite popular...

starleague.mit.edu
Normal
Please log in or register to reply.
Live Events Refresh
Next event in 7h 35m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
Nina 204
RuFF_SC2 156
ProTech64
StarCraft: Brood War
Sea 3568
Sharp 55
Noble 25
Icarus 9
Dota 2
monkeys_forever1168
LuMiX1
League of Legends
Cuddl3bear6
Counter-Strike
Stewie2K606
Coldzera 448
Super Smash Bros
hungrybox558
AZ_Axe160
Other Games
tarik_tv9241
summit1g3903
shahzam841
ViBE238
Maynarde190
Organizations
Other Games
gamesdonequick1669
StarCraft: Brood War
UltimateBattle 49
Other Games
BasetradeTV43
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 15 non-featured ]
StarCraft 2
• HeavenSC 54
• rockletztv 43
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• Azhi_Dahaki17
• iopq 1
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
League of Legends
• Doublelift5270
Upcoming Events
Esports World Cup
7h 35m
ByuN vs Zoun
SHIN vs TriGGeR
Cyan vs ShoWTimE
Rogue vs HeRoMaRinE
Clem vs Solar
Reynor vs Maru
herO vs Cure
Serral vs Classic
Esports World Cup
1d 7h
Esports World Cup
2 days
CranKy Ducklings
3 days
BSL20 Non-Korean Champi…
3 days
CSO Cup
3 days
BSL20 Non-Korean Champi…
3 days
Bonyth vs Sziky
Dewalt vs Hawk
Hawk vs QiaoGege
Sziky vs Dewalt
Mihu vs Bonyth
Zhanhun vs QiaoGege
QiaoGege vs Fengzi
FEL
4 days
BSL20 Non-Korean Champi…
4 days
BSL20 Non-Korean Champi…
4 days
Bonyth vs Zhanhun
Dewalt vs Mihu
Hawk vs Sziky
Sziky vs QiaoGege
Mihu vs Hawk
Zhanhun vs Dewalt
Fengzi vs Bonyth
[ Show More ]
Sparkling Tuna Cup
6 days
Online Event
6 days
Liquipedia Results

Completed

CSL Xiamen Invitational
Championship of Russia 2025
Murky Cup #2

Ongoing

Copa Latinoamericana 4
Jiahua Invitational
BSL20 Non-Korean Championship
Esports World Cup 2025
CC Div. A S7
Underdog Cup #2
IEM Cologne 2025
FISSURE Playground #1
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025
PGL Astana 2025
Asian Champions League '25

Upcoming

CSLPRO Last Chance 2025
CSLPRO Chat StarLAN 3
BSL Season 21
RSL Revival: Season 2
SEL Season 2 Championship
uThermal 2v2 Main Event
FEL Cracov 2025
HCC Europe
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.