• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 16:19
CEST 22:19
KST 05:19
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
[ASL19] Finals Recap: Standing Tall9HomeStory Cup 27 - Info & Preview18Classic wins Code S Season 2 (2025)16Code S RO4 & Finals Preview: herO, Rogue, Classic, GuMiho0TL Team Map Contest #5: Presented by Monster Energy6
Community News
Flash Announces Hiatus From ASL49Weekly Cups (June 23-29): Reynor in world title form?12FEL Cracov 2025 (July 27) - $8000 live event16Esports World Cup 2025 - Final Player Roster16Weekly Cups (June 16-22): Clem strikes back1
StarCraft 2
General
The SCII GOAT: A statistical Evaluation Statistics for vetoed/disliked maps Esports World Cup 2025 - Final Player Roster How does the number of casters affect your enjoyment of esports? Weekly Cups (June 23-29): Reynor in world title form?
Tourneys
RSL: Revival, a new crowdfunded tournament series [GSL 2025] Code S: Season 2 - Semi Finals & Finals $5,100+ SEL Season 2 Championship (SC: Evo) FEL Cracov 2025 (July 27) - $8000 live event HomeStory Cup 27 (June 27-29)
Strategy
How did i lose this ZvP, whats the proper response Simple Questions Simple Answers
Custom Maps
[UMS] Zillion Zerglings
External Content
Mutation # 480 Moths to the Flame Mutation # 479 Worn Out Welcome Mutation # 478 Instant Karma Mutation # 477 Slow and Steady
Brood War
General
Flash Announces Hiatus From ASL [ASL19] Finals Recap: Standing Tall BGH Auto Balance -> http://bghmmr.eu/ Player “Jedi” cheat on CSL Help: rep cant save
Tourneys
Small VOD Thread 2.0 [Megathread] Daily Proleagues [BSL20] GosuLeague RO16 - Tue & Wed 20:00+CET The Casual Games of the Week Thread
Strategy
Simple Questions, Simple Answers I am doing this better than progamers do.
Other Games
General Games
Stormgate/Frost Giant Megathread Nintendo Switch Thread Path of Exile What do you want from future RTS games? Beyond All Reason
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
US Politics Mega-thread Things Aren’t Peaceful in Palestine Russo-Ukrainian War Thread Trading/Investing Thread The Games Industry And ATVI
Fan Clubs
SKT1 Classic Fan Club! Maru Fan Club
Media & Entertainment
Anime Discussion Thread [Manga] One Piece [\m/] Heavy Metal Thread
Sports
2024 - 2025 Football Thread NBA General Discussion Formula 1 Discussion TeamLiquid Health and Fitness Initiative For 2023 NHL Playoffs 2024
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
Blogs
Culture Clash in Video Games…
TrAiDoS
from making sc maps to makin…
Husyelt
Blog #2
tankgirl
StarCraft improvement
iopq
Trip to the Zoo
micronesia
Customize Sidebar...

Website Feedback

Closed Threads



Active: 657 users

[mini math lecture] lecture 1: equivalent class

Blogs > evanthebouncy!
Post a Reply
1 2 Next All
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
Last Edited: 2009-05-10 06:54:19
May 10 2009 06:49 GMT
#1
Seems like a lot of people are trying to understand the proposed solution in:
http://www.teamliquid.net/blogs/viewblog.php?topic_id=93007
And one of the big problem is that they do not understand these terms and what they mean:
equivalent class
equivalent relation

This blog is aimed to help people understand these terms, so that they might be able to understand the solution a bit better.
In particular, equivalent class is a powerful tool in mathematics that is NOT really difficult to grasp and very intuitive and easy to use, so for your own good, you should try to comprehend it.
If any math major reading this thread has some suggestions feel free to post them, the added information will surely help others understand these things better.


++++++++++++++++++++++++++++
Let us begin!
Grab a pen and some paper, it should be fun

Equivalent class is a way that you can use to partition a set. It is useful because it let us look at a big, maybe confusing set, in smaller pieces.
That's probably a lot of stuff so we start small:

First we'd have to understand what is a partition
What is a partition?
Say your set is a pizza, we can cut it into 4 slices, and that makes a "partition".
In a more precise term, a partition is an action, or a result of that action, on a set such that you divide the set into subsets, and when you concatenate all the subsets, you get the whole set back, and yet no subsets intersects each other.
Example:
Set A = {1 2 3 4 5 6}
A partition for set A can be:
{1 2 3} {4} {5 6}
{1 2 3 4 5 6}
A partition for set A cannot be:
{1 2 3} {4 6} (because concatenation does not reproduce the whole set back)
{1 2 3} {3 4 5 6} (because 3 is shared among 2 subsets)

More example:
A partition on all natural numbers N can be:
{1, 2, 3, 4, 5} {everything else}
{1 3 5 7 ... odd numbers} {2 4 6 8 ... even numbers}

A circle being partitioned into different subsets:
[image loading]



Now let's move on to [/b]equivalence relation[/b].
Remember in partition we're trying to divide a set into subsets? An equivalence relation helps us do that by saying:
element x and y are both in subset A if and only if x ~ y. The subset A is called an Equivalent Class.

"~" means "equivalent relation", and "x~y" reads "x is equivalent of y"
Let's understand it.
The definition for ~ include 3 of the following properties:
reflexive: x~x is true
symmetric: if x~y, then y~x is true
transitive: if x~y, y~z, then x~z is true

Examples of equivalent relations:
1) x~y if they have the same age.
To check that 1) describe an equivalent relation, we'll check it against our 3 criterias:
-reflexive, is x~x true?
yes, x has the same age as x.
-symmetric, is x~y implies y~x?
yes, x has same age as y, then y has same age as x.
-transitive, is x~y, y~z implies x~z?
yes, x has same age as y, y has same age as z, then x has same age as z.
Therefore 1) describes a valid equivalent relation.


How do we use equivalent relation to form partitions?
By construction. This is how:
Say our set is A, and we wish to form a partition on A.

We first pick an element a in A.
Now we find all elements x such that a~x
Think of it as finding all the x that are related to a.
Put the a and all the x into a set, call it H_a

We then pick an element b in A, but not in H_a
Now we find all elements x such that b~x
Put everything in H_b

repeat the process until A becomes empty.

Now I claim that H_a, H_b, .... H_n is a partition of A. Do you trust me?
Probably not, so let's prove it:
To satisfy the partition requirement, we must show 2 things, that concatenating all the subsets reproduce A, and no 2 subsets have intersections.

Since we repeat the process until A becomes empty, then our H_a, H_b... must contains ALL the elements from A, therefore concactenating them back will give us all of A.

To show that no 2 subsets have intersections though, that might take some work. Let's prove that by contradiction:
Suppose some 2 subsets have an intersection, then pick an element x from that intersection. Now x is in both H_j and H_k (that's what it means by living in the intersection).
By our definition, x is related to everything in H_j since x in H_j by our construction means x is related to j, and j related to everything.
Then similarly, x is related to everything in H_k.
It follows that everything in H_k is related to everything in H_j, meaning that H_k and H_j would've been in the same subset to begin with, forming a contradiction.


So if you read through all that... let's try an example of forming such partitions by using equivalent classes:

Let the room be full of people {a, b, c, d, e, f, g, h}
Let a = 10 by age, and b = 11, c = 10, d = 11, e = 12, f = 10, g = 12, h = 11;
We let our equivalent relation be x~y if x y same age.

We pick an element from these people, let's say we picked b.
We now find everybody that are related to b, namely all people of age 11, so b, d, h.
We put all that into a subset H_b, and H_b = {b, d, h}

Now we find an element that's not in H_b, but still in our set, we settled with a.
Then find everybody related to a, {a, c, f}
Name our set H_a = {a, c, f}

Then find element e, and H_e = {e, g}

So we've exhausted set A, and now we formed a partition:
H_a, H_b, H_e
or
{a, c, f}, {b, d, h}, {e, g}

Where H_a is an equivalent class, H_b is an equivalent class, H_e is an equivalent class.
You should varify that this does indeed forms a valid partition.


If you followed everything in this post you should get some idea what is a partition and what is an equivalent relation, and what is an equivalent class, and how they are used to construct each other.

Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
Last Edited: 2009-05-10 06:59:12
May 10 2009 06:50 GMT
#2
exercise problems:
1) Form a partition on the real numbers, anything would work, and verify that it is a valid partition.
2) Let us consider the real numbers, we define an equivalent relation: x~y if x-y=0. Is this a valid equivalent relation? Show works.
3) Let us consider a group of humans, we define an equivalent relation: x~y if x and y are in a family. Is this a valid equivalent relation? Show works.
4) Suggest a way to partition the natural numbers into equivalent classes, how many subsets are there in your partition? What is the equivalent relations you used?
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
seppolevne
Profile Blog Joined February 2009
Canada1681 Posts
May 10 2009 07:03 GMT
#3
Wow this is awesome. I've tried to learn math on wikipedia a couple times and the writing style just isn't for that.

Thanks!
J- Pirate Udyr WW T- Pirate Riven Galio M- Galio Annie S- Sona Lux -- Always farm, never carry.
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
May 10 2009 07:07 GMT
#4
On May 10 2009 16:03 seppolevne wrote:
Wow this is awesome. I've tried to learn math on wikipedia a couple times and the writing style just isn't for that.

Thanks!

thx for the thanks! this is quite a long post and I was worried it won't be appreciated
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
UnitarySpace
Profile Joined November 2007
United States61 Posts
Last Edited: 2009-05-10 07:15:35
May 10 2009 07:14 GMT
#5
I believe the canonical terms are "equivalence class" and "equivalence relation."

Additional comment:
Equivalence classes are useful when you have a bunch of things that you don't wan't to distinguish from each other.

Some uses of equivalence classes:

1. The rational numbers need to be sorted out into equivalence classes or you won't have unique additive inverses (1/2, 2/4, 3/6 etc)
2. In constructing decimal expansions of real numbers you want to clump together numbers like .9999--- and 1. (Equivalence classes of cauchy sequences) (Actually that's how you make any metric space complete)
3. If you want to talk about an inner product space (lebesgue integrable functions on an interval for example) you need to be able put together measurable functions that are the same almost everywhere (everywhere except for a set of measure zero) or else we don't have positive definiteness
4. You can construct weird things like non measurable sets

(Good thread - there should be more math threads)
Huh?
Divinek
Profile Blog Joined November 2006
Canada4045 Posts
May 10 2009 07:20 GMT
#6
Yeah it is usually equivalence, very nice read though. Seems to cover everything pretty well
Never attribute to malice that which can be adequately explained by stupidity.
Oh goodness me, FOX tv where do you get your sight? Can't you keep track, the puck is black. That's why the ice is white.
Gliche
Profile Blog Joined August 2008
United States811 Posts
May 10 2009 07:36 GMT
#7
you need to come teach at my old school. i swear you are overqualified. xD
KT fighting~!! | Designing things is fun!
Malongo
Profile Blog Joined November 2005
Chile3472 Posts
May 10 2009 08:35 GMT
#8
Teacher! teacher! i learned then what is an equivalence relation. However, I think you missed to tell what is a relation in first place (: . Well just a small point. Good work Evan.
Help me! im still improving my English. An eye for an eye makes the whole world blind. M. G.
Klockan3
Profile Blog Joined July 2007
Sweden2866 Posts
Last Edited: 2009-05-10 09:06:19
May 10 2009 09:05 GMT
#9
On May 10 2009 17:35 Malongo wrote:
what is a relation

It is what they get when a guy asks a woman out and she says yes.
Equivalent relation is just another word for a polyamoric relationship, with the normal 2 element relation being a special case.
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
May 10 2009 11:35 GMT
#10
On May 10 2009 16:14 UnitarySpace wrote:
I believe the canonical terms are "equivalence class" and "equivalence relation."

Additional comment:
Equivalence classes are useful when you have a bunch of things that you don't wan't to distinguish from each other.

Some uses of equivalence classes:

1. The rational numbers need to be sorted out into equivalence classes or you won't have unique additive inverses (1/2, 2/4, 3/6 etc)
2. In constructing decimal expansions of real numbers you want to clump together numbers like .9999--- and 1. (Equivalence classes of cauchy sequences) (Actually that's how you make any metric space complete)
3. If you want to talk about an inner product space (lebesgue integrable functions on an interval for example) you need to be able put together measurable functions that are the same almost everywhere (everywhere except for a set of measure zero) or else we don't have positive definiteness
4. You can construct weird things like non measurable sets

(Good thread - there should be more math threads)


OoOO! equivalent class of cauchy sequences!
Do you go let x, y be cauchy sequences, x~y if x, y converge to the same element?
That's so cool!
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
Nytefish
Profile Blog Joined December 2007
United Kingdom4282 Posts
May 10 2009 12:15 GMT
#11
Ah it would be nice if this forum had some sort of latex input, but this is clear enough anyway.

The first time I heard of equivalence relations I was very confused, partly due to the fact that I didn't even know what a set was. If I had an explanation like the one you've given I'm sure I would've understood instantly.

Also I just noticed the spelling of concatenate, I've heard people say it like "con-cak-ta-nate" so I assumed there was another c there. Strange that I've never actually written that word.
No I'm never serious.
EsX_Raptor
Profile Blog Joined February 2008
United States2801 Posts
May 10 2009 14:06 GMT
#12
In conclusion:

A set is a sequence of stuff:
{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z} is the set of lowercase letters in the alphabet.
{..., -3, -2, -1, 0, 1, 2, 3, ...} is the set of integers.
{a, x, p, L, 2, 0, F, s, 5} is just a set (no a particular one, obviously)

A subset is a little piece of a bigger set:
{e, f, g, h, i} is a subset of the alphabet

A partition of a set is when you take all of its subsets and concatenate (sort of like add) them together, you get back the whole set again:
{a, b, c, d, e}{f, g, h, i, j, k, l, m, n}{o, p, q, r, s, t u, v, w, x, y}{z}
No overlapping allowed: {a, b, c}{c, d, e, ...}

+ Show Spoiler +
am I right? o.O
silynxer
Profile Joined April 2006
Germany439 Posts
Last Edited: 2009-05-10 14:28:41
May 10 2009 14:15 GMT
#13
On May 10 2009 20:35 evanthebouncy! wrote:
Show nested quote +
On May 10 2009 16:14 UnitarySpace wrote:
I believe the canonical terms are "equivalence class" and "equivalence relation."

Additional comment:
Equivalence classes are useful when you have a bunch of things that you don't wan't to distinguish from each other.

Some uses of equivalence classes:

1. The rational numbers need to be sorted out into equivalence classes or you won't have unique additive inverses (1/2, 2/4, 3/6 etc)
2. In constructing decimal expansions of real numbers you want to clump together numbers like .9999--- and 1. (Equivalence classes of cauchy sequences) (Actually that's how you make any metric space complete)
3. If you want to talk about an inner product space (lebesgue integrable functions on an interval for example) you need to be able put together measurable functions that are the same almost everywhere (everywhere except for a set of measure zero) or else we don't have positive definiteness
4. You can construct weird things like non measurable sets

(Good thread - there should be more math threads)


OoOO! equivalent class of cauchy sequences!
Do you go let x, y be cauchy sequences, x~y if x, y converge to the same element?
That's so cool!


That would totally defeat the purpose (the purpose is for example defining the real numbers). They are equivalent if they get infinetely close to each other (I wont bother with the exact epsilon definition but it's not hard).

The point is that you can't express all limits of cauchy sequences with rational numbers and thus define the limits(=real numbers) over the sequences.

[EDIT]: Damn it's hard to write about math in english, I'll try to clarify: you can't say a_n -> a if you do not have this a, so we try to define the real number a over the equivalence class of all rational sequences a_n that get infinetly close to our unknown a and thus infinetly close to each other.
Nytefish
Profile Blog Joined December 2007
United Kingdom4282 Posts
Last Edited: 2009-05-10 15:12:06
May 10 2009 15:11 GMT
#14
On May 10 2009 23:15 silynxer wrote:
Show nested quote +
On May 10 2009 20:35 evanthebouncy! wrote:
On May 10 2009 16:14 UnitarySpace wrote:
I believe the canonical terms are "equivalence class" and "equivalence relation."

Additional comment:
Equivalence classes are useful when you have a bunch of things that you don't wan't to distinguish from each other.

Some uses of equivalence classes:

1. The rational numbers need to be sorted out into equivalence classes or you won't have unique additive inverses (1/2, 2/4, 3/6 etc)
2. In constructing decimal expansions of real numbers you want to clump together numbers like .9999--- and 1. (Equivalence classes of cauchy sequences) (Actually that's how you make any metric space complete)
3. If you want to talk about an inner product space (lebesgue integrable functions on an interval for example) you need to be able put together measurable functions that are the same almost everywhere (everywhere except for a set of measure zero) or else we don't have positive definiteness
4. You can construct weird things like non measurable sets

(Good thread - there should be more math threads)


OoOO! equivalent class of cauchy sequences!
Do you go let x, y be cauchy sequences, x~y if x, y converge to the same element?
That's so cool!


[EDIT]: Damn it's hard to write about math in english, I'll try to clarify: you can't say a_n -> a if you do not have this a, so we try to define the real number a over the equivalence class of all rational sequences a_n that get infinetly close to our unknown a and thus infinetly close to each other.


It's funny you say that, the lecturer for Analysis always said "...and in German..." before giving a definition using epsilons, exists, for-alls etc.
No I'm never serious.
Malongo
Profile Blog Joined November 2005
Chile3472 Posts
May 10 2009 15:48 GMT
#15
On May 10 2009 20:35 evanthebouncy! wrote:
Show nested quote +
On May 10 2009 16:14 UnitarySpace wrote:
I believe the canonical terms are "equivalence class" and "equivalence relation."

Additional comment:
Equivalence classes are useful when you have a bunch of things that you don't wan't to distinguish from each other.

Some uses of equivalence classes:

1. The rational numbers need to be sorted out into equivalence classes or you won't have unique additive inverses (1/2, 2/4, 3/6 etc)
2. In constructing decimal expansions of real numbers you want to clump together numbers like .9999--- and 1. (Equivalence classes of cauchy sequences) (Actually that's how you make any metric space complete)
3. If you want to talk about an inner product space (lebesgue integrable functions on an interval for example) you need to be able put together measurable functions that are the same almost everywhere (everywhere except for a set of measure zero) or else we don't have positive definiteness
4. You can construct weird things like non measurable sets

(Good thread - there should be more math threads)


OoOO! equivalent class of cauchy sequences!
Do you go let x, y be cauchy sequences, x~y if x, y converge to the same element?
That's so cool!

Just to clarify Not all cauchy sequences converge to an element. IF the space is complete then Cauchy sequences converge. This depends as much as the space sample as the metric used.
And still no "Relation" definition /:
Help me! im still improving my English. An eye for an eye makes the whole world blind. M. G.
Klockan3
Profile Blog Joined July 2007
Sweden2866 Posts
Last Edited: 2009-05-10 15:59:03
May 10 2009 15:56 GMT
#16
On May 11 2009 00:48 Malongo wrote:
Show nested quote +
On May 10 2009 20:35 evanthebouncy! wrote:
On May 10 2009 16:14 UnitarySpace wrote:
I believe the canonical terms are "equivalence class" and "equivalence relation."

Additional comment:
Equivalence classes are useful when you have a bunch of things that you don't wan't to distinguish from each other.

Some uses of equivalence classes:

1. The rational numbers need to be sorted out into equivalence classes or you won't have unique additive inverses (1/2, 2/4, 3/6 etc)
2. In constructing decimal expansions of real numbers you want to clump together numbers like .9999--- and 1. (Equivalence classes of cauchy sequences) (Actually that's how you make any metric space complete)
3. If you want to talk about an inner product space (lebesgue integrable functions on an interval for example) you need to be able put together measurable functions that are the same almost everywhere (everywhere except for a set of measure zero) or else we don't have positive definiteness
4. You can construct weird things like non measurable sets

(Good thread - there should be more math threads)


OoOO! equivalent class of cauchy sequences!
Do you go let x, y be cauchy sequences, x~y if x, y converge to the same element?
That's so cool!

Just to clarify Not all cauchy sequences converge to an element. IF the space is complete then Cauchy sequences converge. This depends as much as the space sample as the metric used.
And still no "Relation" definition /:

a=b+2 is an example of a relation.
a=x+2n were n is any whole number is an example of a relation which have two equivalence classes, the odd and the even numbers. Of course a and x are whole numbers too, otherwise you would have an infinite amount of equivalence classes.
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
Last Edited: 2009-05-10 20:05:34
May 10 2009 19:56 GMT
#17
On May 10 2009 23:06 EsX_Raptor wrote:
In conclusion:

A set is a sequence of stuff:
{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z} is the set of lowercase letters in the alphabet.
{..., -3, -2, -1, 0, 1, 2, 3, ...} is the set of integers.
{a, x, p, L, 2, 0, F, s, 5} is just a set (no a particular one, obviously)

A subset is a little piece of a bigger set:
{e, f, g, h, i} is a subset of the alphabet

A partition of a set is when you take all of its subsets and concatenate (sort of like add) them together, you get back the whole set again:
{a, b, c, d, e}{f, g, h, i, j, k, l, m, n}{o, p, q, r, s, t u, v, w, x, y}{z}
No overlapping allowed: {a, b, c}{c, d, e, ...}

+ Show Spoiler +
am I right? o.O

yeah u got it
Keep in mind that no 2 subsets have overlaps, that is, take ANY 2 subset, there'd be no overlaps.

Basically think of disc partition and use your intuitions.
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
Last Edited: 2009-05-10 20:07:26
May 10 2009 19:59 GMT
#18
On May 11 2009 00:48 Malongo wrote:
Show nested quote +
On May 10 2009 20:35 evanthebouncy! wrote:
On May 10 2009 16:14 UnitarySpace wrote:
I believe the canonical terms are "equivalence class" and "equivalence relation."

Additional comment:
Equivalence classes are useful when you have a bunch of things that you don't wan't to distinguish from each other.

Some uses of equivalence classes:

1. The rational numbers need to be sorted out into equivalence classes or you won't have unique additive inverses (1/2, 2/4, 3/6 etc)
2. In constructing decimal expansions of real numbers you want to clump together numbers like .9999--- and 1. (Equivalence classes of cauchy sequences) (Actually that's how you make any metric space complete)
3. If you want to talk about an inner product space (lebesgue integrable functions on an interval for example) you need to be able put together measurable functions that are the same almost everywhere (everywhere except for a set of measure zero) or else we don't have positive definiteness
4. You can construct weird things like non measurable sets

(Good thread - there should be more math threads)


OoOO! equivalent class of cauchy sequences!
Do you go let x, y be cauchy sequences, x~y if x, y converge to the same element?
That's so cool!

Just to clarify Not all cauchy sequences converge to an element. IF the space is complete then Cauchy sequences converge. This depends as much as the space sample as the metric used.
And still no "Relation" definition /:


I know that already, I'm in an analysis class so don't worry.
I'm trying to understand what kind of fun equivalence class can be drawn on the real numbers.
I was proposing let's have a space of all cauchy sequence that converges, maybe we can break that space into equivalent classes with Xn~Yn iff Xn->k, Yn->k. or something fun

I don't want to define relation here because a relation is more of a "noun" than a "verb" so I think it'll be very confusing for alot of people.


Rigorously speaking
a relation between set X and set Y is a SET(call it R), of pairs with the form (x, y) where x lives in X and y lives in Y.
We say x and y are related(lets denote this by xRy) if and only if the pair (x, y) exists in R.

Example:
set X = {a, b, c}
set Y = {1, 2, 3, 4}
A relation can be
R = {(a, 3), (c, 1), (b, 1)}

Is aR3?
Yes, because (a, 3) exists in R
Is aR1?
No, because (a, 1) does not exist in R
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
EsX_Raptor
Profile Blog Joined February 2008
United States2801 Posts
May 10 2009 20:51 GMT
#19
awesome (:
gondolin
Profile Blog Joined September 2007
France332 Posts
May 12 2009 14:15 GMT
#20
On May 11 2009 04:59 evanthebouncy! wrote:
I was proposing let's have a space of all cauchy sequence that converges, maybe we can break that space into equivalent classes with Xn~Yn iff Xn->k, Yn->k. or something fun


Let X be a set. You can have some fun in trying to define an equivalence
relations on sequences with value on X.

Let F be a subset of P(N). That means that every element of F is a subset
of N. Now if you have two sequences (u_n) and (v_n), you can define the
relation
(u_n) ~ (v_n) iff {n | u_n = v_n} is in F.
(that is you look for which intergers the have the same values, and you say
there are "equivalent" if this set is in F).

Now how can we choose F such that ~ is an equivalence relation?

1) We must have (u_n) ~ (u_n), so that N is in F.
2) If (u_n) ~ (v_n) and (v_n) ~ (w_n), we must have (u_n) ~ (w_n).
Let A={n | u_n=v_n}, B={n| v_n=w_n} and C={n| u_n=w_n}. A and B are in F,
and me must have that C is in F.
Or A cap B is a subset of C.

By detailling further we have: ~ is an equivalence relation iff
- N is in F.
- for every A in F, if B contains A, then B is in F.
- for every A,B in F, A cap B is in F.
Furthermore, if you don't want the relation to be trivial, you have:
- the empty set is not in F.

If F satisfy these relations, it is called a filter. Filters were invented
by Cartan, and there is a book by Bourbaki (Topologie générale) explaining
how to use them in topology.

Some examples:
the equivalence relation used to solve the problem you speak about in the
op is the one defined by the filter of complements of finite sets. That is
A is in F iff N\A is finite.

When you look at converging sequence, you will use the filter
F={ {n,n+1,n+2,...}: n \in N}. If X is a topological space, then (u_n)->x
is the same as saying that for every neighbourhoud V_x of x, {n | u_n \in
V_x} is in F.
1 2 Next All
Please log in or register to reply.
Live Events Refresh
Next event in 3h 41m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
mouzHeroMarine 596
JuggernautJason94
StarCraft: Brood War
Britney 14479
Dewaltoss 192
Aegong 45
GoRush 13
IntoTheRainbow 7
yabsab 5
Dota 2
Gorgc7367
League of Legends
Dendi1481
JimRising 443
Counter-Strike
fl0m1928
flusha408
Foxcn365
sgares185
Super Smash Bros
Mew2King179
Heroes of the Storm
Liquid`Hasu605
Other Games
summit1g6033
FrodaN2371
tarik_tv1112
elazer248
RotterdaM161
Pyrionflax116
ViBE84
Trikslyr64
Sick62
PPMD12
Liquid`Ken5
Organizations
Other Games
BasetradeTV30
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 18 non-featured ]
StarCraft 2
• LUISG 10
• intothetv
• IndyKCrew
• sooper7s
• Migwel
• AfreecaTV YouTube
• LaughNgamezSOOP
• Kozan
StarCraft: Brood War
• blackmanpl 38
• 80smullet 29
• STPLYoutube
• ZZZeroYoutube
• BSLYoutube
League of Legends
• Doublelift2783
• Jankos2203
• masondota2502
Other Games
• imaqtpie873
• Shiphtur187
Upcoming Events
Replay Cast
3h 41m
RSL Revival
13h 41m
herO vs SHIN
Reynor vs Cure
OSC
16h 41m
WardiTV European League
19h 41m
Scarlett vs Percival
Jumy vs ArT
YoungYakov vs Shameless
uThermal vs Fjant
Nicoract vs goblin
Harstem vs Gerald
FEL
19h 41m
Korean StarCraft League
1d 6h
CranKy Ducklings
1d 13h
RSL Revival
1d 13h
FEL
1d 19h
Sparkling Tuna Cup
2 days
[ Show More ]
RSL Revival
2 days
FEL
2 days
BSL: ProLeague
2 days
Dewalt vs Bonyth
Replay Cast
4 days
Replay Cast
4 days
The PondCast
5 days
Replay Cast
6 days
RSL Revival
6 days
Liquipedia Results

Completed

Proleague 2025-06-28
HSC XXVII
Heroes 10 EU

Ongoing

JPL Season 2
BSL 2v2 Season 3
BSL Season 20
Acropolis #3
KCM Race Survival 2025 Season 2
CSL 17: 2025 SUMMER
Copa Latinoamericana 4
Championship of Russia 2025
RSL Revival: Season 1
Murky Cup #2
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025
PGL Astana 2025
Asian Champions League '25
BLAST Rivals Spring 2025
MESA Nomadic Masters
CCT Season 2 Global Finals
IEM Melbourne 2025
YaLLa Compass Qatar 2025

Upcoming

CSLPRO Last Chance 2025
CSLPRO Chat StarLAN 3
K-Championship
uThermal 2v2 Main Event
SEL Season 2 Championship
FEL Cracov 2025
Esports World Cup 2025
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.