• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EST 11:41
CET 17:41
KST 01:41
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
TL.net Map Contest #21: Winners8Intel X Team Liquid Seoul event: Showmatches and Meet the Pros10[ASL20] Finals Preview: Arrival13TL.net Map Contest #21: Voting12[ASL20] Ro4 Preview: Descent11
Community News
Starcraft, SC2, HoTS, WC3, returning to Blizzcon!33$5,000+ WardiTV 2025 Championship6[BSL21] RO32 Group Stage4Weekly Cups (Oct 26-Nov 2): Liquid, Clem, Solar win; LAN in Philly2Weekly Cups (Oct 20-26): MaxPax, Clem, Creator win9
StarCraft 2
General
RotterdaM "Serral is the GOAT, and it's not close" TL.net Map Contest #21: Winners Starcraft, SC2, HoTS, WC3, returning to Blizzcon! 5.0.15 Patch Balance Hotfix (2025-10-8) Weekly Cups (Oct 20-26): MaxPax, Clem, Creator win
Tourneys
$5,000+ WardiTV 2025 Championship Sparkling Tuna Cup - Weekly Open Tournament Constellation Cup - Main Event - Stellar Fest Merivale 8 Open - LAN - Stellar Fest Sea Duckling Open (Global, Bronze-Diamond)
Strategy
Custom Maps
Map Editor closed ?
External Content
Mutation # 498 Wheel of Misfortune|Cradle of Death Mutation # 497 Battle Haredened Mutation # 496 Endless Infection Mutation # 495 Rest In Peace
Brood War
General
BW General Discussion [ASL20] Ask the mapmakers — Drop your questions [BSL21] RO32 Group Stage BGH Auto Balance -> http://bghmmr.eu/ SnOw's ASL S20 Finals Review
Tourneys
[Megathread] Daily Proleagues [ASL20] Grand Finals [BSL21] RO32 Group B - Sunday 21:00 CET [BSL21] RO32 Group A - Saturday 21:00 CET
Strategy
Current Meta PvZ map balance How to stay on top of macro? Soma's 9 hatch build from ASL Game 2
Other Games
General Games
Path of Exile Stormgate/Frost Giant Megathread Dawn of War IV Nintendo Switch Thread ZeroSpace Megathread
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread SPIRED by.ASL Mafia {211640}
Community
General
US Politics Mega-thread Russo-Ukrainian War Thread Things Aren’t Peaceful in Palestine YouTube Thread Dating: How's your luck?
Fan Clubs
White-Ra Fan Club The herO Fan Club!
Media & Entertainment
Anime Discussion Thread Movie Discussion! [Manga] One Piece Korean Music Discussion Series you have seen recently...
Sports
2024 - 2026 Football Thread NBA General Discussion MLB/Baseball 2023 TeamLiquid Health and Fitness Initiative For 2023 Formula 1 Discussion
World Cup 2022
Tech Support
SC2 Client Relocalization [Change SC2 Language] Linksys AE2500 USB WIFI keeps disconnecting Computer Build, Upgrade & Buying Resource Thread
TL Community
The Automated Ban List Recent Gifted Posts
Blogs
Coffee x Performance in Espo…
TrAiDoS
Saturation point
Uldridge
DnB/metal remix FFO Mick Go…
ImbaTosS
Why we need SC3
Hildegard
Reality "theory" prov…
perfectspheres
Our Last Hope in th…
KrillinFromwales
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1716 users

An interesting geometry problem

Blogs > Muirhead
Post a Reply
Muirhead
Profile Blog Joined October 2007
United States556 Posts
Last Edited: 2008-01-29 12:28:31
January 29 2008 12:24 GMT
#1
This one has many solutions, a few of which are rather amazing in my opinion.

Suppose O,V, and W are three circles in the plane, none of which intersect each other and all of which have different radii.

Given any two of the three circles, there will be exactly four lines tangent to both circles. Two of those lines will not intersect the segment connecting the centers of the two circles. Those two lines are called the common external tangents of the two circles.

Suppose the external tangents of O and V meet at a point P.
Suppose the external tangents of O and W meet at a point Q.
Suppose the external tangents of V and W meet at a point R.

Prove that P,Q, and R all lie on one line.



By the way: Would people like me to occasionally post nice elementary problems, like this one and the ones Slithe has been posting, or should this blog focus on more advanced mathematics? What subjects are most interesting to you?

*****
starleague.mit.edu
Leath
Profile Blog Joined July 2006
Canada1724 Posts
January 29 2008 15:02 GMT
#2
I wanna see the solution
http://www.kongregate.com/?referrer=Sagess
Lemonwalrus
Profile Blog Joined August 2006
United States5465 Posts
January 29 2008 18:36 GMT
#3
I proved it using AutoCAD, does that count?

Meh, imageshack is being buggy and won't let me upload the picture.

Anyways, this gave me an excuse to refresh my CAD memory, so I guess it wasn't a total loss.

I now patiently await the correct answer.
Muirhead
Profile Blog Joined October 2007
United States556 Posts
January 29 2008 18:39 GMT
#4
I'll wait until tomorrow afternoon and then post the answer if no one gets it by then
starleague.mit.edu
Slithe
Profile Blog Joined February 2007
United States985 Posts
January 29 2008 18:45 GMT
#5
I think I'm close to a pure algebra plug and chug solution, but I'm much more interested in seeing if there is an elegant solution.

Unfortunately I must now go to school, so I will continue this later. I'm sure by the time I get back polemarch will have found at least 3 different ways to solve it, thus making the problem look ridiculously easy.
Lemonwalrus
Profile Blog Joined August 2006
United States5465 Posts
January 29 2008 18:50 GMT
#6
+ Show Spoiler +
[image loading]


There is a pic of it.
Zortch
Profile Blog Joined January 2008
Canada635 Posts
January 29 2008 19:08 GMT
#7
Yea I was working on cranking out some algebra too...boring
Trying to find a nicer solution but I really should do my calc homeowork T_T
Respect is everything. ~ARchon
15vs1
Profile Joined November 2007
64 Posts
January 29 2008 19:53 GMT
#8
Analytical way of solution is the most obvious but not very elegant. I will post it later.
15vs1
Profile Joined November 2007
64 Posts
Last Edited: 2008-01-29 20:14:25
January 29 2008 20:04 GMT
#9
It is easy to show that point of intersection of 2 external tangents lies on the line connecting centers of circles and the distance between center of larger circe and intersection point is
[image loading]

where l_{12}
is the distance between centers of circles, r_1 and r_2 are radii of circles. Using this we can find the coordinates of the intersection point
[image loading]

where x_1 and x_2 are coordinates of the centers of circles. Similarly
[image loading]

Let us consider 3 circles now, 1st is the largest and 3rd is the smallest.
P - point of intersection of external tangets of 1st and 2nd circles
Q - point of intersection of external tangets of 1st and 3rd circles
R - point of intersection of external tangets of 2nd and 2rd circles
The coordinates of these points are as follows (we always can choose coordinate system so that x_1=0, y_1=0, x_2=0)
[image loading]

Let us consider vectors PQ and Pr and show that they have the same direction (it means these points lie on 1 line). The coordinates of these vectors are
[image loading]

Last equations are equal.
Polemarch
Profile Joined August 2005
Canada1564 Posts
Last Edited: 2008-01-29 20:28:35
January 29 2008 20:10 GMT
#10
Yeah... once you realize that WQ is a multiple of WO based on the radii of those circles, it's pretty easy to churn out an algebraic solution. I started to do one with Cartesian coordinates then gave up out of tediousness.

Something slightly nicer (at least in terms of notation) is that you can use vectors to show that PR and RQ have the same direction by expressing them both as multiples of WV and WO.

There must be some nice solutions involving reflections or something... but I don't see any. Sorry to disappoint you, Slithe. Looking forward to seeing other solutions.

edit: Nice, 15vs1 - I'm impressed at the writeup.

Muirhead: I think this difficulty level is reasonable, with harder ones occasionally mixed in if you're intending to do it regularly. As for the types of problems, go with your tastes. I personally am not really a fan of geometry problems for the most part because I'm not very good at visualizing them, so I tend to resort to analytic geometry, which I don't find very satisfying. (Judging by your sig, I guess you disagree!) Of course, there are some problems that are really nice; or it'll all be worth it if you or someone else posts some beautiful solution to this one.
I BELIEVE IN CAPITAL LETTER PUNISHMENT!!!!!
Slithe
Profile Blog Joined February 2007
United States985 Posts
January 29 2008 20:42 GMT
#11
I don't have much of an intuition for geometry either, although I do find it interesting. I believe the answer I got via brute force was pretty much the same as 15vs1.

Currently, my intuition says that there's some way to use some crazy triangle properties to solve this elegantly. I could just be way off base though...
Daveed
Profile Blog Joined December 2006
United States236 Posts
January 29 2008 20:55 GMT
#12
More advanced mathematics would be interesting.
Muirhead
Profile Blog Joined October 2007
United States556 Posts
Last Edited: 2008-01-29 22:43:12
January 29 2008 22:34 GMT
#13
I admire your tenacity in working out the coordinates, 15vs1 . I wouldn't have the strength to carry it through.

+ Show Spoiler +
Perhaps the simplest way to do this is with Desargues' theorem, but I doubt everyone here knows that theorem. I leave it as an exercise to whoever knows it to fill in that proof.

Here is the elegant way:

+ Show Spoiler +


Imagine the plane containing the three circles as lying in three dimensional space. Suppose we are looking down on the plane from above, as we usually do. Construct three cones with bases equal to the three circles. Make sure that each cone is pointing up, towards us. Make sure each cone is right and that the height of each cone is equal to the radius of its base. This means that all three cones are similar.

Denote the tip of the cone with base O by A.
Denote the tip of the cone with base V by B.
Denote the tip of the cone with base W by C.

Now, we claim that the line through A and B passes through P. Why is this true? Well, notice that there is a dilation centered at P which takes circle O into circle V. Because all the cones are similar, this dilation also takes the cone with base O into the cone with base V. Thus, it takes A, the tip of the cone above O, into B, the tip of the cone above V.

Similarly, we have that the line through A and C passes through Q, and the line through B and C passes through R.

Thus, P,Q, and R all lie in the plane that contains the points A,B, and C. They also lie in the plane that contains the circles.

The intersection of two planes is a line
starleague.mit.edu
Slithe
Profile Blog Joined February 2007
United States985 Posts
January 29 2008 22:37 GMT
#14
OK I think I have a cleaner method then brute force coordinates for solving this that uses more triangles. I didn't check whether my solution works yet, but have a look.

+ Show Spoiler +

So we have the three circles O, V, W, and the three intersection points P, Q, R. I'm going to make one assumption that I should prove first but do not feel like doing right now. The assumption is that I know the lengths of OP, OQ, and VR, via the ratios of the circle radii.
For example, |PO| = |VO| * (radius of O) / (radius of O - radius of V).

Now for the next part, here's a picture to help the visualization.

[image loading]


If and only if P, Q, and R are on a straight line, then the areas of the triangles OPQ and OQR have to add up to equal the area of the triangle OPR. Given this, we just need to calculate the areas of the triangles, which is not difficult because we can extrapolate most of the information.

Right off that bat we should know the lengths of OV, VW, OW. I also assume that my above equation is correct, in which case we should know OP, OQ, VR. From here on out, it's just simple trigonometric calculations, i.e. law of sines and cosines, heron's formula, to show that the areas add up correctly.
Muirhead
Profile Blog Joined October 2007
United States556 Posts
Last Edited: 2008-01-29 22:49:42
January 29 2008 22:41 GMT
#15
Slithe that works
I'm not sure it is nicer than coordinates though.

I don't like causing people pain, so all problems I post should have short, hopefully cool/interesting solutions. I just posted the answer to this one under spoilers.

Also, thanks for the feedback everyone.
starleague.mit.edu
15vs1
Profile Joined November 2007
64 Posts
January 30 2008 09:31 GMT
#16
Great solution. I would never find it but anyway i think you should give more time. Elementary math is not worse than advanced if the problem is interesting so i would be glad to see here any types of problems.
On January 30 2008 07:41 Muirhead wrote:
I don't like causing people pain,

I wish all professors did not like it too.
Elements
Profile Joined September 2007
United States13 Posts
February 20 2008 22:02 GMT
#17
How about by Menelaus it's obvious
Eh I'm late but I was just reading your other blog post
Please log in or register to reply.
Live Events Refresh
Next event in 1h 19m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
RotterdaM 611
BRAT_OK 90
Livibee 89
MindelVK 6
StarCraft: Brood War
Jaedong 1970
GuemChi 1227
Light 969
EffOrt 797
Stork 716
Larva 427
Snow 422
Mini 271
Barracks 270
Rush 229
[ Show more ]
sSak 118
Leta 107
sorry 61
JYJ39
Aegong 34
Backho 30
zelot 24
soO 20
scan(afreeca) 11
Bale 11
Terrorterran 11
HiyA 8
Dota 2
qojqva3801
syndereN272
420jenkins271
Counter-Strike
oskar99
Other Games
singsing1973
DeMusliM392
crisheroes308
Lowko272
Hui .162
Liquid`VortiX160
KnowMe118
QueenE47
Trikslyr34
Organizations
Counter-Strike
PGL204
Other Games
BasetradeTV64
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 18 non-featured ]
StarCraft 2
• Kozan
• IndyKCrew
• sooper7s
• Migwel
• AfreecaTV YouTube
• LaughNgamezSOOP
• intothetv
StarCraft: Brood War
• Michael_bg 3
• STPLYoutube
• ZZZeroYoutube
• BSLYoutube
Dota 2
• C_a_k_e 3547
• lizZardDota229
League of Legends
• Nemesis4219
• TFBlade797
Other Games
• WagamamaTV362
• Shiphtur165
• tFFMrPink 15
Upcoming Events
LAN Event
1h 19m
Lambo vs Harstem
FuturE vs Maplez
Scarlett vs FoxeR
Gerald vs Mixu
Zoun vs TBD
Clem vs TBD
ByuN vs TBD
TriGGeR vs TBD
Korean StarCraft League
10h 19m
CranKy Ducklings
17h 19m
IPSL
1d 1h
dxtr13 vs OldBoy
Napoleon vs Doodle
LAN Event
1d 1h
BSL 21
1d 3h
Gosudark vs Kyrie
Gypsy vs Sterling
UltrA vs Radley
Dandy vs Ptak
Replay Cast
1d 6h
Sparkling Tuna Cup
1d 17h
WardiTV Korean Royale
1d 19h
IPSL
2 days
JDConan vs WIZARD
WolFix vs Cross
[ Show More ]
LAN Event
2 days
BSL 21
2 days
spx vs rasowy
HBO vs KameZerg
Cross vs Razz
dxtr13 vs ZZZero
Replay Cast
2 days
Wardi Open
2 days
WardiTV Korean Royale
3 days
Replay Cast
4 days
Kung Fu Cup
4 days
Classic vs Solar
herO vs Cure
Reynor vs GuMiho
ByuN vs ShoWTimE
Tenacious Turtle Tussle
5 days
The PondCast
5 days
RSL Revival
5 days
Solar vs Zoun
MaxPax vs Bunny
Kung Fu Cup
5 days
WardiTV Korean Royale
5 days
RSL Revival
6 days
Classic vs Creator
Cure vs TriGGeR
Kung Fu Cup
6 days
Liquipedia Results

Completed

BSL 21 Points
SC4ALL: StarCraft II
Eternal Conflict S1

Ongoing

C-Race Season 1
IPSL Winter 2025-26
KCM Race Survival 2025 Season 4
SOOP Univ League 2025
YSL S2
Stellar Fest: Constellation Cup
IEM Chengdu 2025
PGL Masters Bucharest 2025
Thunderpick World Champ.
CS Asia Championships 2025
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual

Upcoming

BSL Season 21
SLON Tour Season 2
BSL 21 Non-Korean Championship
Acropolis #4
IPSL Spring 2026
HSC XXVIII
RSL Offline Finals
WardiTV 2025
RSL Revival: Season 3
META Madness #9
BLAST Bounty Winter 2026: Closed Qualifier
eXTREMESLAND 2025
ESL Impact League Season 8
SL Budapest Major 2025
BLAST Rivals Fall 2025
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.