• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 11:47
CEST 17:47
KST 00:47
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
[ASL19] Finals Recap: Standing Tall10HomeStory Cup 27 - Info & Preview18Classic wins Code S Season 2 (2025)16Code S RO4 & Finals Preview: herO, Rogue, Classic, GuMiho0TL Team Map Contest #5: Presented by Monster Energy6
Community News
Firefly given lifetime ban by ESIC following match-fixing investigation7$25,000 Streamerzone StarCraft Pro Series announced4Weekly Cups (June 30 - July 6): Classic Doubles6[BSL20] Non-Korean Championship 4x BSL + 4x China9Flash Announces Hiatus From ASL66
StarCraft 2
General
Firefly given lifetime ban by ESIC following match-fixing investigation TL Team Map Contest #4: Winners Weekly Cups (June 30 - July 6): Classic Doubles The SCII GOAT: A statistical Evaluation The GOAT ranking of GOAT rankings
Tourneys
FEL Cracov 2025 (July 27) - $8000 live event $25,000 Streamerzone StarCraft Pro Series announced Sparkling Tuna Cup - Weekly Open Tournament RSL: Revival, a new crowdfunded tournament series WardiTV Mondays
Strategy
How did i lose this ZvP, whats the proper response Simple Questions Simple Answers
Custom Maps
[UMS] Zillion Zerglings
External Content
Mutation # 481 Fear and Lava Mutation # 480 Moths to the Flame Mutation # 479 Worn Out Welcome Mutation # 478 Instant Karma
Brood War
General
BGH Auto Balance -> http://bghmmr.eu/ i aint gon lie to u bruh... ASL20 Preliminary Maps [G] Progamer Settings [ASL19] Finals Recap: Standing Tall
Tourneys
[Megathread] Daily Proleagues [BSL20] Non-Korean Championship 4x BSL + 4x China [BSL20] Grand Finals - Sunday 20:00 CET CSL Xiamen International Invitational
Strategy
Simple Questions, Simple Answers I am doing this better than progamers do.
Other Games
General Games
Nintendo Switch Thread Stormgate/Frost Giant Megathread Path of Exile What do you want from future RTS games? Beyond All Reason
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Positive Thoughts on Setting Up a Dual-Caliber FX
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
US Politics Mega-thread Things Aren’t Peaceful in Palestine Russo-Ukrainian War Thread Summer Games Done Quick 2025! Stop Killing Games - European Citizens Initiative
Fan Clubs
SKT1 Classic Fan Club! Maru Fan Club
Media & Entertainment
Anime Discussion Thread [Manga] One Piece [\m/] Heavy Metal Thread
Sports
Formula 1 Discussion 2024 - 2025 Football Thread NBA General Discussion TeamLiquid Health and Fitness Initiative For 2023 NHL Playoffs 2024
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
The Automated Ban List
Blogs
momentary artworks from des…
tankgirl
Culture Clash in Video Games…
TrAiDoS
from making sc maps to makin…
Husyelt
StarCraft improvement
iopq
Customize Sidebar...

Website Feedback

Closed Threads



Active: 690 users

An interesting geometry problem

Blogs > Muirhead
Post a Reply
Muirhead
Profile Blog Joined October 2007
United States556 Posts
Last Edited: 2008-01-29 12:28:31
January 29 2008 12:24 GMT
#1
This one has many solutions, a few of which are rather amazing in my opinion.

Suppose O,V, and W are three circles in the plane, none of which intersect each other and all of which have different radii.

Given any two of the three circles, there will be exactly four lines tangent to both circles. Two of those lines will not intersect the segment connecting the centers of the two circles. Those two lines are called the common external tangents of the two circles.

Suppose the external tangents of O and V meet at a point P.
Suppose the external tangents of O and W meet at a point Q.
Suppose the external tangents of V and W meet at a point R.

Prove that P,Q, and R all lie on one line.



By the way: Would people like me to occasionally post nice elementary problems, like this one and the ones Slithe has been posting, or should this blog focus on more advanced mathematics? What subjects are most interesting to you?

*****
starleague.mit.edu
Leath
Profile Blog Joined July 2006
Canada1724 Posts
January 29 2008 15:02 GMT
#2
I wanna see the solution
http://www.kongregate.com/?referrer=Sagess
Lemonwalrus
Profile Blog Joined August 2006
United States5465 Posts
January 29 2008 18:36 GMT
#3
I proved it using AutoCAD, does that count?

Meh, imageshack is being buggy and won't let me upload the picture.

Anyways, this gave me an excuse to refresh my CAD memory, so I guess it wasn't a total loss.

I now patiently await the correct answer.
Muirhead
Profile Blog Joined October 2007
United States556 Posts
January 29 2008 18:39 GMT
#4
I'll wait until tomorrow afternoon and then post the answer if no one gets it by then
starleague.mit.edu
Slithe
Profile Blog Joined February 2007
United States985 Posts
January 29 2008 18:45 GMT
#5
I think I'm close to a pure algebra plug and chug solution, but I'm much more interested in seeing if there is an elegant solution.

Unfortunately I must now go to school, so I will continue this later. I'm sure by the time I get back polemarch will have found at least 3 different ways to solve it, thus making the problem look ridiculously easy.
Lemonwalrus
Profile Blog Joined August 2006
United States5465 Posts
January 29 2008 18:50 GMT
#6
+ Show Spoiler +
[image loading]


There is a pic of it.
Zortch
Profile Blog Joined January 2008
Canada635 Posts
January 29 2008 19:08 GMT
#7
Yea I was working on cranking out some algebra too...boring
Trying to find a nicer solution but I really should do my calc homeowork T_T
Respect is everything. ~ARchon
15vs1
Profile Joined November 2007
64 Posts
January 29 2008 19:53 GMT
#8
Analytical way of solution is the most obvious but not very elegant. I will post it later.
15vs1
Profile Joined November 2007
64 Posts
Last Edited: 2008-01-29 20:14:25
January 29 2008 20:04 GMT
#9
It is easy to show that point of intersection of 2 external tangents lies on the line connecting centers of circles and the distance between center of larger circe and intersection point is
[image loading]

where l_{12}
is the distance between centers of circles, r_1 and r_2 are radii of circles. Using this we can find the coordinates of the intersection point
[image loading]

where x_1 and x_2 are coordinates of the centers of circles. Similarly
[image loading]

Let us consider 3 circles now, 1st is the largest and 3rd is the smallest.
P - point of intersection of external tangets of 1st and 2nd circles
Q - point of intersection of external tangets of 1st and 3rd circles
R - point of intersection of external tangets of 2nd and 2rd circles
The coordinates of these points are as follows (we always can choose coordinate system so that x_1=0, y_1=0, x_2=0)
[image loading]

Let us consider vectors PQ and Pr and show that they have the same direction (it means these points lie on 1 line). The coordinates of these vectors are
[image loading]

Last equations are equal.
Polemarch
Profile Joined August 2005
Canada1564 Posts
Last Edited: 2008-01-29 20:28:35
January 29 2008 20:10 GMT
#10
Yeah... once you realize that WQ is a multiple of WO based on the radii of those circles, it's pretty easy to churn out an algebraic solution. I started to do one with Cartesian coordinates then gave up out of tediousness.

Something slightly nicer (at least in terms of notation) is that you can use vectors to show that PR and RQ have the same direction by expressing them both as multiples of WV and WO.

There must be some nice solutions involving reflections or something... but I don't see any. Sorry to disappoint you, Slithe. Looking forward to seeing other solutions.

edit: Nice, 15vs1 - I'm impressed at the writeup.

Muirhead: I think this difficulty level is reasonable, with harder ones occasionally mixed in if you're intending to do it regularly. As for the types of problems, go with your tastes. I personally am not really a fan of geometry problems for the most part because I'm not very good at visualizing them, so I tend to resort to analytic geometry, which I don't find very satisfying. (Judging by your sig, I guess you disagree!) Of course, there are some problems that are really nice; or it'll all be worth it if you or someone else posts some beautiful solution to this one.
I BELIEVE IN CAPITAL LETTER PUNISHMENT!!!!!
Slithe
Profile Blog Joined February 2007
United States985 Posts
January 29 2008 20:42 GMT
#11
I don't have much of an intuition for geometry either, although I do find it interesting. I believe the answer I got via brute force was pretty much the same as 15vs1.

Currently, my intuition says that there's some way to use some crazy triangle properties to solve this elegantly. I could just be way off base though...
Daveed
Profile Blog Joined December 2006
United States236 Posts
January 29 2008 20:55 GMT
#12
More advanced mathematics would be interesting.
Muirhead
Profile Blog Joined October 2007
United States556 Posts
Last Edited: 2008-01-29 22:43:12
January 29 2008 22:34 GMT
#13
I admire your tenacity in working out the coordinates, 15vs1 . I wouldn't have the strength to carry it through.

+ Show Spoiler +
Perhaps the simplest way to do this is with Desargues' theorem, but I doubt everyone here knows that theorem. I leave it as an exercise to whoever knows it to fill in that proof.

Here is the elegant way:

+ Show Spoiler +


Imagine the plane containing the three circles as lying in three dimensional space. Suppose we are looking down on the plane from above, as we usually do. Construct three cones with bases equal to the three circles. Make sure that each cone is pointing up, towards us. Make sure each cone is right and that the height of each cone is equal to the radius of its base. This means that all three cones are similar.

Denote the tip of the cone with base O by A.
Denote the tip of the cone with base V by B.
Denote the tip of the cone with base W by C.

Now, we claim that the line through A and B passes through P. Why is this true? Well, notice that there is a dilation centered at P which takes circle O into circle V. Because all the cones are similar, this dilation also takes the cone with base O into the cone with base V. Thus, it takes A, the tip of the cone above O, into B, the tip of the cone above V.

Similarly, we have that the line through A and C passes through Q, and the line through B and C passes through R.

Thus, P,Q, and R all lie in the plane that contains the points A,B, and C. They also lie in the plane that contains the circles.

The intersection of two planes is a line
starleague.mit.edu
Slithe
Profile Blog Joined February 2007
United States985 Posts
January 29 2008 22:37 GMT
#14
OK I think I have a cleaner method then brute force coordinates for solving this that uses more triangles. I didn't check whether my solution works yet, but have a look.

+ Show Spoiler +

So we have the three circles O, V, W, and the three intersection points P, Q, R. I'm going to make one assumption that I should prove first but do not feel like doing right now. The assumption is that I know the lengths of OP, OQ, and VR, via the ratios of the circle radii.
For example, |PO| = |VO| * (radius of O) / (radius of O - radius of V).

Now for the next part, here's a picture to help the visualization.

[image loading]


If and only if P, Q, and R are on a straight line, then the areas of the triangles OPQ and OQR have to add up to equal the area of the triangle OPR. Given this, we just need to calculate the areas of the triangles, which is not difficult because we can extrapolate most of the information.

Right off that bat we should know the lengths of OV, VW, OW. I also assume that my above equation is correct, in which case we should know OP, OQ, VR. From here on out, it's just simple trigonometric calculations, i.e. law of sines and cosines, heron's formula, to show that the areas add up correctly.
Muirhead
Profile Blog Joined October 2007
United States556 Posts
Last Edited: 2008-01-29 22:49:42
January 29 2008 22:41 GMT
#15
Slithe that works
I'm not sure it is nicer than coordinates though.

I don't like causing people pain, so all problems I post should have short, hopefully cool/interesting solutions. I just posted the answer to this one under spoilers.

Also, thanks for the feedback everyone.
starleague.mit.edu
15vs1
Profile Joined November 2007
64 Posts
January 30 2008 09:31 GMT
#16
Great solution. I would never find it but anyway i think you should give more time. Elementary math is not worse than advanced if the problem is interesting so i would be glad to see here any types of problems.
On January 30 2008 07:41 Muirhead wrote:
I don't like causing people pain,

I wish all professors did not like it too.
Elements
Profile Joined September 2007
United States13 Posts
February 20 2008 22:02 GMT
#17
How about by Menelaus it's obvious
Eh I'm late but I was just reading your other blog post
Please log in or register to reply.
Live Events Refresh
Next event in 14m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
mouzHeroMarine 400
mcanning 192
uThermal 91
StarCraft: Brood War
Flash 2751
Bisu 2424
Shuttle 2157
EffOrt 1290
firebathero 483
Snow 469
hero 373
Larva 351
Soulkey 320
Mini 290
[ Show more ]
actioN 240
Soma 228
Zeus 146
ToSsGirL 90
Hyun 84
TY 80
Pusan 55
Terrorterran 45
JYJ36
soO 34
Noble 30
Rush 26
Sacsri 18
JulyZerg 17
Rock 14
GoRush 10
IntoTheRainbow 10
HiyA 8
sorry 6
zelot 5
Dota 2
Gorgc11640
qojqva2006
oskar116
League of Legends
singsing2246
Counter-Strike
flusha317
byalli295
zeus48
Heroes of the Storm
Khaldor154
Other Games
gofns16817
FrodaN2383
B2W.Neo1321
hiko1009
shahzam810
crisheroes203
Liquid`VortiX186
KnowMe116
Trikslyr42
QueenE37
Organizations
Other Games
gamesdonequick40078
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 14 non-featured ]
StarCraft 2
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• iopq 9
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• C_a_k_e 2179
League of Legends
• Nemesis6179
• TFBlade963
Upcoming Events
uThermal 2v2 Circuit
14m
WardiTV European League
14m
Jumy vs NightPhoenix
Percival vs Nicoract
ArT vs HiGhDrA
MaxPax vs Harstem
Scarlett vs Shameless
SKillous vs uThermal
Replay Cast
8h 14m
RSL Revival
18h 14m
ByuN vs SHIN
Clem vs Reynor
OSC
21h 14m
Replay Cast
1d 8h
RSL Revival
1d 18h
Classic vs Cure
FEL
2 days
OSC
2 days
RSL Revival
2 days
[ Show More ]
FEL
2 days
FEL
3 days
CSO Cup
3 days
BSL20 Non-Korean Champi…
3 days
Bonyth vs QiaoGege
Dewalt vs Fengzi
Hawk vs Zhanhun
Sziky vs Mihu
Mihu vs QiaoGege
Zhanhun vs Sziky
Fengzi vs Hawk
Sparkling Tuna Cup
3 days
RSL Revival
3 days
FEL
3 days
BSL20 Non-Korean Champi…
4 days
Bonyth vs Dewalt
QiaoGege vs Dewalt
Hawk vs Bonyth
Sziky vs Fengzi
Mihu vs Zhanhun
QiaoGege vs Zhanhun
Fengzi vs Mihu
Replay Cast
5 days
Liquipedia Results

Completed

Proleague 2025-07-07
HSC XXVII
Heroes 10 EU

Ongoing

JPL Season 2
BSL 2v2 Season 3
Acropolis #3
KCM Race Survival 2025 Season 2
CSL 17: 2025 SUMMER
Copa Latinoamericana 4
Jiahua Invitational
Championship of Russia 2025
RSL Revival: Season 1
Murky Cup #2
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025
PGL Astana 2025
Asian Champions League '25
BLAST Rivals Spring 2025
MESA Nomadic Masters
CCT Season 2 Global Finals
IEM Melbourne 2025

Upcoming

2025 ACS Season 2: Qualifier
CSLPRO Last Chance 2025
CSL Xiamen Invitational
2025 ACS Season 2
CSLPRO Chat StarLAN 3
K-Championship
uThermal 2v2 Main Event
SEL Season 2 Championship
FEL Cracov 2025
Esports World Cup 2025
Underdog Cup #2
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.