• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 21:25
CEST 03:25
KST 10:25
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
RSL Season 1 - Final Week6[ASL19] Finals Recap: Standing Tall12HomeStory Cup 27 - Info & Preview18Classic wins Code S Season 2 (2025)16Code S RO4 & Finals Preview: herO, Rogue, Classic, GuMiho0
Community News
Esports World Cup 2025 - Brackets Revealed10Weekly Cups (July 7-13): Classic continues to roll4Team TLMC #5 - Submission extension3Firefly given lifetime ban by ESIC following match-fixing investigation17$25,000 Streamerzone StarCraft Pro Series announced7
StarCraft 2
General
RSL Revival patreon money discussion thread Who will win EWC 2025? The GOAT ranking of GOAT rankings Weekly Cups (July 7-13): Classic continues to roll Esports World Cup 2025 - Brackets Revealed
Tourneys
FEL Cracov 2025 (July 27) - $8000 live event RSL: Revival, a new crowdfunded tournament series $5,100+ SEL Season 2 Championship (SC: Evo) WardiTV Mondays Sparkling Tuna Cup - Weekly Open Tournament
Strategy
How did i lose this ZvP, whats the proper response Simple Questions Simple Answers
Custom Maps
External Content
Mutation # 482 Wheel of Misfortune Mutation # 481 Fear and Lava Mutation # 480 Moths to the Flame Mutation # 479 Worn Out Welcome
Brood War
General
Flash Announces (and Retracts) Hiatus From ASL BGH Auto Balance -> http://bghmmr.eu/ BW General Discussion Starcraft in widescreen A cwal.gg Extension - Easily keep track of anyone
Tourneys
[Megathread] Daily Proleagues Cosmonarchy Pro Showmatches CSL Xiamen International Invitational [BSL20] Non-Korean Championship 4x BSL + 4x China
Strategy
Simple Questions, Simple Answers I am doing this better than progamers do.
Other Games
General Games
Nintendo Switch Thread Stormgate/Frost Giant Megathread Path of Exile CCLP - Command & Conquer League Project The PlayStation 5
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
US Politics Mega-thread Russo-Ukrainian War Thread Stop Killing Games - European Citizens Initiative Summer Games Done Quick 2025! Things Aren’t Peaceful in Palestine
Fan Clubs
SKT1 Classic Fan Club! Maru Fan Club
Media & Entertainment
[Manga] One Piece Movie Discussion! Anime Discussion Thread [\m/] Heavy Metal Thread
Sports
Formula 1 Discussion TeamLiquid Health and Fitness Initiative For 2023 2024 - 2025 Football Thread NBA General Discussion NHL Playoffs 2024
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
The Automated Ban List
Blogs
Men Take Risks, Women Win Ga…
TrAiDoS
momentary artworks from des…
tankgirl
from making sc maps to makin…
Husyelt
StarCraft improvement
iopq
Trip to the Zoo
micronesia
Customize Sidebar...

Website Feedback

Closed Threads



Active: 733 users

[Basic Math Help]Cylindrical Coordinate Systems???

Blogs > Loser777
Post a Reply
Normal
Loser777
Profile Blog Joined January 2008
1931 Posts
October 05 2012 06:56 GMT
#1
The cylindrical coordinate system was first introduced to me in a multivariable calc class, though now it's being used again in a different context. When dealing with various fancy integrals, we were mostly concerned with the change of variables from x, y, and z to rho, phi, and z. Conversion was fairly straightforward, since it is easily seen how x = rhocosphi and y = rhosinphi and dxdydz becomes rhodrhodphidz. However, I don't understand the unit vector side of the definition of the cylindrical coordinate system very well.

When simply dealing with the cylindrical system to describe a position, phi is defined as the angle counterclockwise from the x-axis to rho. In the vector definition, howerver, rho, phi, and z form an orthonormal basis. I don't understand this for two reasons--how is it possible to relate phi as an angle giving the position of rho projected in the x-y plane with phi as an unit vector? Does it make sense to have phi be used as a direction when rho in the original definition has both an x and y component?

TL DR-> When converting a vector in the standard basis to a cylindrical basis, why do I need to convert both the variables x, y, z and ALSO use the corresponding transformations mandated by the change from the unit vectors ax, ay, az to arho, aphi, az.


*
6581
Cowpieguy
Profile Blog Joined February 2011
United States97 Posts
October 05 2012 07:30 GMT
#2
Sorry, it's been too long since I did this shit. Sounds exciting though. Makes me want to go study it again. I forgot how cool this stuff is. Don't you have a textbook to consult? Or a professor?
]343[
Profile Blog Joined May 2008
United States10328 Posts
October 05 2012 07:35 GMT
#3
Sorry, I'm not sure I understand your question.

The dx dy dz = r sin phi dr dphi dz is a change of variables for the integral; the "unit vector" thing you're talking about sounds like a change of coordinate basis. These are related, but I don't think they're identical.
Writer
Oldfool
Profile Joined January 2011
Australia394 Posts
Last Edited: 2012-10-05 07:43:16
October 05 2012 07:42 GMT
#4
On October 05 2012 16:35 ]343[ wrote:
Sorry, I'm not sure I understand your question.

The dx dy dz = r sin phi dr dphi dz is a change of variables for the integral; the "unit vector" thing you're talking about sounds like a change of coordinate basis. These are related, but I don't think they're identical.

Pretty sure it's r dr dphi dz; r sin phi is for spherical polar coords.
I'm not really sure what you're asking either. I find http://mathworld.wolfram.com/CylindricalCoordinates.html to be a pretty good collection of information (seriously that page is packed) on cylindrical coords.
"The trouble with quotes on the internet is that it is difficult to discern whether or not they are genuine." - Abraham Lincoln
Loser777
Profile Blog Joined January 2008
1931 Posts
October 05 2012 08:46 GMT
#5
On October 05 2012 16:42 Oldfool wrote:
Show nested quote +
On October 05 2012 16:35 ]343[ wrote:
Sorry, I'm not sure I understand your question.

The dx dy dz = r sin phi dr dphi dz is a change of variables for the integral; the "unit vector" thing you're talking about sounds like a change of coordinate basis. These are related, but I don't think they're identical.

Pretty sure it's r dr dphi dz; r sin phi is for spherical polar coords.
I'm not really sure what you're asking either. I find http://mathworld.wolfram.com/CylindricalCoordinates.html to be a pretty good collection of information (seriously that page is packed) on cylindrical coords.

That doesn't really answer my quesiton; I want to know the definitions that lead to (20), (21), and (22), as well as the relationship (if any) with (4), (5), and (6).


On October 05 2012 16:35 ]343[ wrote:
Sorry, I'm not sure I understand your question.

The dx dy dz = r sin phi dr dphi dz is a change of variables for the integral; the "unit vector" thing you're talking about sounds like a change of coordinate basis. These are related, but I don't think they're identical.

I think you've mixed spherical and cylindrical together with that.

I guess my actual question is the change of basis matrix i.e. given a vector x in the standard basis and say b = Ax where A is the matrix that changes x from the standard basis to the cylindrical basis vector b, how is the matrix A related to the original x = rhocosphi, y = rhosinphi, and z=z?
6581
phiinix
Profile Blog Joined February 2011
United States1169 Posts
October 05 2012 08:56 GMT
#6
...basic?
surfinbird1
Profile Joined September 2009
Germany999 Posts
October 05 2012 09:15 GMT
#7
On October 05 2012 17:46 Loser777 wrote:
Show nested quote +
On October 05 2012 16:42 Oldfool wrote:
On October 05 2012 16:35 ]343[ wrote:
Sorry, I'm not sure I understand your question.

The dx dy dz = r sin phi dr dphi dz is a change of variables for the integral; the "unit vector" thing you're talking about sounds like a change of coordinate basis. These are related, but I don't think they're identical.

Pretty sure it's r dr dphi dz; r sin phi is for spherical polar coords.
I'm not really sure what you're asking either. I find http://mathworld.wolfram.com/CylindricalCoordinates.html to be a pretty good collection of information (seriously that page is packed) on cylindrical coords.

That doesn't really answer my quesiton; I want to know the definitions that lead to (20), (21), and (22), as well as the relationship (if any) with (4), (5), and (6).

The relationship is that you take your new positional vector r and derive it with respect to its variables (rho, phi and z). This gives you an orthogonal system of vectors. To normalize you divide by their respective length, now you have the orthonormal vectors e_phi, e_rho, e_z.

Show nested quote +
On October 05 2012 16:35 ]343[ wrote:
Sorry, I'm not sure I understand your question.

The dx dy dz = r sin phi dr dphi dz is a change of variables for the integral; the "unit vector" thing you're talking about sounds like a change of coordinate basis. These are related, but I don't think they're identical.

I think you've mixed spherical and cylindrical together with that.

I guess my actual question is the change of basis matrix i.e. given a vector x in the standard basis and say b = Ax where A is the matrix that changes x from the standard basis to the cylindrical basis vector b, how is the matrix A related to the original x = rhocosphi, y = rhosinphi, and z=z?

Which matrix relates the volume elements to one another? It's the Jacobian! Same here.
life of lively to live to life of full life thx to shield battery
munchmunch
Profile Joined October 2010
Canada789 Posts
October 05 2012 09:24 GMT
#8
On October 05 2012 17:46 Loser777 wrote:
I guess my actual question is the change of basis matrix i.e. given a vector x in the standard basis and say b = Ax where A is the matrix that changes x from the standard basis to the cylindrical basis vector b, how is the matrix A related to the original x = rhocosphi, y = rhosinphi, and z=z?
Something to keep in mind is that the change from standard coordinates to cylindrical coordinates is not a linear transformation, so there isn't really a "change of basis matrix".
galtdunn
Profile Joined March 2011
United States977 Posts
Last Edited: 2012-10-05 09:37:25
October 05 2012 09:29 GMT
#9
how is it possible to relate phi as an angle giving the position of rho projected in the x-y plane with phi as an unit vector?

I simplified this to as "how is it possible to relate an angle giving a position to an unit vector?" because it doesn't matter what angle or which position (phi and rho).

Wouldn't you relate angles to values through the trigonometric functions?

So when x=rcos(theta) and y=rsin(theta) for your vector r = <x,y,z>, aka x = rhocosphi and y = rhosinphi, and for your vector r = <rho,phi,z>, you're taking a derivative with respect to phi (in the case of the phi unit vector) and then normalizing.

In the case of an actual vector, those phis will have values and thus give you your directional unit vector.

Does it make sense to have phi be used as a direction when rho in the original definition has both an x and y component?

I think so, because in the expression y = rhosinphi, what you're doing is multiplying rho by some number, given by sinphi. In the end, y will still equal a normal integer. Just because the value phi ITSELF doesn't technically have an 'x' or 'y' component because it's an angle doesn't mean it can't relate to them.

Edit: Well after reading your replies to the other comments I don't even know if what I said means anything (not that it was necessarily correct anyways, it's been a few months since multivariable). I think you're asking for a couple different things here. Yo no comprende.
Currently editing items in the DotA 2 wiki. PM for questions/suggestions.
Plexa
Profile Blog Joined October 2005
Aotearoa39261 Posts
Last Edited: 2012-10-05 10:40:00
October 05 2012 10:36 GMT
#10
I was going to write something up, but then I realised this and this do a pretty good job of explaining this.

e_rho always points along a line from the origin outwards
e_phi tells you, effectively, what is the angle that e_rho is pointing in - but it isn't as simple as that. It actually tells you how 'fast' the point/object is rotating around the origin
e_z tells you the height
Administrator~ Spirit will set you free ~
hypercube
Profile Joined April 2010
Hungary2735 Posts
Last Edited: 2012-10-05 11:16:46
October 05 2012 11:16 GMT
#11
Might be easier to understand the same concept for polar coordinates (2D) first. For polar coordinates you have a radial unit vector which is just r/|r| and a tangential unit vector which is perpendicular to it and of unit length.

The cylindrical case is exactly the same, just add a unit vector in the z direction.
"Sending people in rockets to other planets is a waste of money better spent on sending rockets into people on this planet."
AmericanUmlaut
Profile Blog Joined November 2010
Germany2577 Posts
October 05 2012 11:29 GMT
#12
I love reading these high-level math discussions, though my geometry knowledge isn't near enough to contribute in any meaningful way.

I am adding rhodrhodphidz to my list of band names, though.
The frumious Bandersnatch
DarkPlasmaBall
Profile Blog Joined March 2010
United States44252 Posts
October 05 2012 11:43 GMT
#13
On October 05 2012 17:56 phiinix wrote:
...basic?


hahahaha.

Well I think this one was more easily and consistently answered than those order of operation problems that half of TL can't do ^^

On October 05 2012 20:29 AmericanUmlaut wrote:
I love reading these high-level math discussions, though my geometry knowledge isn't near enough to contribute in any meaningful way.

I am adding rhodrhodphidz to my list of band names, though.


Yeah... multivariable calculus is ~Calc 3. How would you pronounce it as a band name? rod-rod-fidz? Instead of "rho-d-rho-d-phi-d-z"?
"There is nothing more satisfying than looking at a crowd of people and helping them get what I love." ~Day[9] Daily #100
YokoKano
Profile Blog Joined July 2012
United States612 Posts
October 05 2012 12:01 GMT
#14
just think about it.

my calc 2 prof was an interesting guy. probably the best part of the course was observing how manipulating the z-axis in polar coordinate system created spirals from circles (where z was sorta like time). there was a lot of insight to be garnered about various transformations because the guy had an intuitive understanding of how various representations interacted.

where math is concerned, just try to keep things consistent. usually you're thinking in a way that's too complex and sort of overshooting the real issue. when you're approaching all these transformations, the only danger is that of inconsistency. just keep in mind that all these transformations are dealing with the same basic information, and try to keep your focus on the big picture; the point is to appreciate how it all coalesces. don't get lost in nuance.
IQ 155.905638752
Hryul
Profile Blog Joined March 2011
Austria2609 Posts
Last Edited: 2012-10-05 13:09:07
October 05 2012 13:08 GMT
#15
Something to keep in mind is that most of the time the notation is quite sloppy. i just skimmed through plexas first link and it seemed right there. You have to distinguish between the unit vector e_phi and the length of this vector |phi|. so while most of the time one writes "phi", it is meant like |phi| * e_phi. (and no proper distinguishing between phi and |phi|)

You should also keep in mind that the transformation between x,y,z < - > r, phi, z is different from dx dy dz because in the first you simply change the coordinates while at the latter you account the fact that a change in coordinates also changes the way volume is measured.
Countdown to victory: 1 200!
googolplex
Profile Blog Joined February 2012
United States280 Posts
October 05 2012 13:37 GMT
#16
This is not basic. Also Plexa...
011000100110010101100001011101010111010001101001011001100111010101101100
Hamster1800
Profile Blog Joined August 2008
United States175 Posts
October 05 2012 15:33 GMT
#17
First, I want to say that I think it's completely reasonable that you were confused, and possibly good. There's a subtle distinction here and the chances are that your teacher did not mention.

You already understand the first part -- the transformation between Cartesian and cylindrical coordinates given by
x = r cos phi
y = r sin phi
z = z

Now you're looking at integrals, and then dx dy dz is becoming r dr dphi dz, why is that?
To answer this you should think about what you are doing when computing an integral. You split your space up into a bunch of tiny boxes. Then for each box you're evaluating your function in the middle of the box and multiplying by the size of the box. The integral is just the limiting value of this process.

Okay so consider what happens to this sum after a coordinate transformation. The value of the function won't change, but the size of the box might. Equally sized boxes in one coordinate system might not be equally sized in the other! The measure of how the size of the box changes is given by the Jacobian of the coordinate change.

You should be familiar with the idea that any smooth function, when you look at it closely enough, behaves pretty much as if it's linear. One can think of the Jacobian as just this linear map. But wait! The change of coordinates is not actually linear, what gives? Well what you actually want is a way to think about "local behavior" as another space. This is called the tangent space at a point, which I'll write as T_x for the tangent space at x. Now in R^3, the tangent space at every point also looks like R^3. Even more confusingly, in Cartesian coordinates, for every point x, the basis vectors dx, dy, dz of T_x just look like the normal basis vectors <1,0,0>, <0,1,0>, <0,0,1>.

But let's look at cylindrical coordinates. Given a point x = (r cos phi, r sin phi, z), what should the basis vectors of T_x be? They should describe the effect of increasing r by a small amount, increasing phi by a small amount, or increasing z by a small amount. What you'll get is that the basis vectors are dr = <cos phi, sin phi, 0>, dphi = <-r sin phi, r cos phi, 0>, dz = <0, 0, 1>. This is different for each point x, but will be an orthogonal basis of T_x for whatever x you choose (there are complications at the origin, but when doing integrals you don't care if one point is messed up).

The change in the size of a box is given by the determinant of the matrix defined by dr, dphi, dz, which you can compute to be r. That's why dx dy dz becomes r dr dphi dz.
D is for Diamond, E is for Everything Else
stoned_rabbit
Profile Blog Joined November 2009
United States324 Posts
October 05 2012 15:50 GMT
#18
On October 06 2012 00:33 Hamster1800 wrote:
First, I want to say that I think it's completely reasonable that you were confused, and possibly good. There's a subtle distinction here and the chances are that your teacher did not mention.

You already understand the first part -- the transformation between Cartesian and cylindrical coordinates given by
x = r cos phi
y = r sin phi
z = z

Now you're looking at integrals, and then dx dy dz is becoming r dr dphi dz, why is that?
To answer this you should think about what you are doing when computing an integral. You split your space up into a bunch of tiny boxes. Then for each box you're evaluating your function in the middle of the box and multiplying by the size of the box. The integral is just the limiting value of this process.

Okay so consider what happens to this sum after a coordinate transformation. The value of the function won't change, but the size of the box might. Equally sized boxes in one coordinate system might not be equally sized in the other! The measure of how the size of the box changes is given by the Jacobian of the coordinate change.

You should be familiar with the idea that any smooth function, when you look at it closely enough, behaves pretty much as if it's linear. One can think of the Jacobian as just this linear map. But wait! The change of coordinates is not actually linear, what gives? Well what you actually want is a way to think about "local behavior" as another space. This is called the tangent space at a point, which I'll write as T_x for the tangent space at x. Now in R^3, the tangent space at every point also looks like R^3. Even more confusingly, in Cartesian coordinates, for every point x, the basis vectors dx, dy, dz of T_x just look like the normal basis vectors <1,0,0>, <0,1,0>, <0,0,1>.

But let's look at cylindrical coordinates. Given a point x = (r cos phi, r sin phi, z), what should the basis vectors of T_x be? They should describe the effect of increasing r by a small amount, increasing phi by a small amount, or increasing z by a small amount. What you'll get is that the basis vectors are dr = <cos phi, sin phi, 0>, dphi = <-r sin phi, r cos phi, 0>, dz = <0, 0, 1>. This is different for each point x, but will be an orthogonal basis of T_x for whatever x you choose (there are complications at the origin, but when doing integrals you don't care if one point is messed up).

The change in the size of a box is given by the determinant of the matrix defined by dr, dphi, dz, which you can compute to be r. That's why dx dy dz becomes r dr dphi dz.


This guy is awesome.
EffervescentAureola
Profile Blog Joined June 2012
United States410 Posts
October 05 2012 18:13 GMT
#19
On October 06 2012 00:50 stoned_rabbit wrote:
Show nested quote +
On October 06 2012 00:33 Hamster1800 wrote:
First, I want to say that I think it's completely reasonable that you were confused, and possibly good. There's a subtle distinction here and the chances are that your teacher did not mention.

You already understand the first part -- the transformation between Cartesian and cylindrical coordinates given by
x = r cos phi
y = r sin phi
z = z

Now you're looking at integrals, and then dx dy dz is becoming r dr dphi dz, why is that?
To answer this you should think about what you are doing when computing an integral. You split your space up into a bunch of tiny boxes. Then for each box you're evaluating your function in the middle of the box and multiplying by the size of the box. The integral is just the limiting value of this process.

Okay so consider what happens to this sum after a coordinate transformation. The value of the function won't change, but the size of the box might. Equally sized boxes in one coordinate system might not be equally sized in the other! The measure of how the size of the box changes is given by the Jacobian of the coordinate change.

You should be familiar with the idea that any smooth function, when you look at it closely enough, behaves pretty much as if it's linear. One can think of the Jacobian as just this linear map. But wait! The change of coordinates is not actually linear, what gives? Well what you actually want is a way to think about "local behavior" as another space. This is called the tangent space at a point, which I'll write as T_x for the tangent space at x. Now in R^3, the tangent space at every point also looks like R^3. Even more confusingly, in Cartesian coordinates, for every point x, the basis vectors dx, dy, dz of T_x just look like the normal basis vectors <1,0,0>, <0,1,0>, <0,0,1>.

But let's look at cylindrical coordinates. Given a point x = (r cos phi, r sin phi, z), what should the basis vectors of T_x be? They should describe the effect of increasing r by a small amount, increasing phi by a small amount, or increasing z by a small amount. What you'll get is that the basis vectors are dr = <cos phi, sin phi, 0>, dphi = <-r sin phi, r cos phi, 0>, dz = <0, 0, 1>. This is different for each point x, but will be an orthogonal basis of T_x for whatever x you choose (there are complications at the origin, but when doing integrals you don't care if one point is messed up).

The change in the size of a box is given by the determinant of the matrix defined by dr, dphi, dz, which you can compute to be r. That's why dx dy dz becomes r dr dphi dz.


This guy is awesome.

Sometimes I wish I was that good at math:p
ymir233
Profile Blog Joined June 2010
United States8275 Posts
October 05 2012 19:04 GMT
#20
On October 05 2012 15:56 Loser777 wrote:
The cylindrical coordinate system was first introduced to me in a multivariable calc class, though now it's being used again in a different context. When dealing with various fancy integrals, we were mostly concerned with the change of variables from x, y, and z to rho, phi, and z. Conversion was fairly straightforward, since it is easily seen how x = rhocosphi and y = rhosinphi and dxdydz becomes rhodrhodphidz. However, I don't understand the unit vector side of the definition of the cylindrical coordinate system very well.

When simply dealing with the cylindrical system to describe a position, phi is defined as the angle counterclockwise from the x-axis to rho. In the vector definition, howerver, rho, phi, and z form an orthonormal basis. I don't understand this for two reasons--how is it possible to relate phi as an angle giving the position of rho projected in the x-y plane with phi as an unit vector? Does it make sense to have phi be used as a direction when rho in the original definition has both an x and y component?

TL DR-> When converting a vector in the standard basis to a cylindrical basis, why do I need to convert both the variables x, y, z and ALSO use the corresponding transformations mandated by the change from the unit vectors ax, ay, az to arho, aphi, az.


It's easier (actually more definition than anything else) to think about the unit vector as <dz, drho, dphi>. That should help clear things up (because those actually HAVE a direction, assuming you've set where 0 and 2pi are).

Also, be careful. This is a common bone between mathematicians and physicists, this convention of where phi and rho should be.
Come motivate me to be cynical about animus at http://infinityandone.blogspot.com/ // Stork proxy gates are beautiful.
Zortch
Profile Blog Joined January 2008
Canada635 Posts
Last Edited: 2012-10-05 19:23:02
October 05 2012 19:21 GMT
#21
I like your question about how to underatand phi as a vector.
What you need to do is understand how the space (r, phi) with r >=0 and 0=<phi<2pi is a vector space. What are the operations? How do you add vectors here is such a way that it behaves in the way we want it to? Etc...

Edit: this is for polar coords of course. Cylindrical is similar
Respect is everything. ~ARchon
Aerisky
Profile Blog Joined May 2012
United States12129 Posts
October 05 2012 19:45 GMT
#22
Wow this looks awesome yet crazy at the same time ._.

Makes me wonder whether entering technical/hard sciences is a good idea after all .__.
Jim while Johnny had had had had had had had; had had had had the better effect on the teacher.
Loser777
Profile Blog Joined January 2008
1931 Posts
October 05 2012 19:48 GMT
#23
Still trying to read through all the posts--Plexa's scribd example is nice in that it presents the unit vector phi's direction as being determined by how the position vector moves as phi grows. It's also nice to see that they express r as a function of rho and z and show why phi is always orthogonal to r.

Now I'm just trying to rationalize how my textbook's transformation of cylindrical position vectors involves rho, but I have to finish a lab for another class first!

Thanks, and I understand that these kinds of blogs are definitely not as interesting to read as girl blogs.
6581
Ssin
Profile Blog Joined August 2010
United States88 Posts
October 05 2012 20:12 GMT
#24
Not interesting? I know more than a few people here enjoy mathematical discussions. Vector transformations to other coordinates is a useful skill toi have, and having an actual question about it is a nice change of pace.

Makes me wonder whether entering technical/hard sciences is a good idea after all .__.

Well, it depends on your outlook. It is a mentally satisfying experience, and can change how you view things. Especially if you decide to enter graduate school and focus on a specific area of study. The world seems so much smaller and yet so much more complicated.
]343[
Profile Blog Joined May 2008
United States10328 Posts
October 05 2012 22:47 GMT
#25
On October 05 2012 16:42 Oldfool wrote:
Show nested quote +
On October 05 2012 16:35 ]343[ wrote:
Sorry, I'm not sure I understand your question.

The dx dy dz = r sin phi dr dphi dz is a change of variables for the integral; the "unit vector" thing you're talking about sounds like a change of coordinate basis. These are related, but I don't think they're identical.

Pretty sure it's r dr dphi dz; r sin phi is for spherical polar coords.


lol, oops...

anyway, I'm glad hamster is much more coherent (and correct) than I am
Writer
Normal
Please log in or register to reply.
Live Events Refresh
PiGosaur Monday
00:00
#40
CranKy Ducklings166
EnkiAlexander 60
davetesta29
rockletztv 19
Liquipedia
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
Nina 184
RuFF_SC2 103
Livibee 84
CosmosSc2 59
StarCraft: Brood War
Leta 494
MaD[AoV]35
Icarus 5
Dota 2
NeuroSwarm121
League of Legends
Cuddl3bear2
Counter-Strike
Coldzera 216
Super Smash Bros
hungrybox436
Mew2King131
AZ_Axe68
Other Games
summit1g13604
shahzam857
Day[9].tv830
ViBE242
C9.Mang0200
Maynarde144
Trikslyr71
Organizations
Other Games
gamesdonequick3186
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 15 non-featured ]
StarCraft 2
• Berry_CruncH138
• LaughNgamezSOOP
• sooper7s
• AfreecaTV YouTube
• intothetv
• Migwel
• Kozan
• IndyKCrew
StarCraft: Brood War
• STPLYoutube
• ZZZeroYoutube
• BSLYoutube
League of Legends
• Doublelift4137
• TFBlade745
Other Games
• Scarra1180
• Day9tv830
Upcoming Events
uThermal 2v2 Circuit
14h 35m
Replay Cast
22h 35m
The PondCast
1d 8h
OSC
1d 11h
WardiTV European League
1d 14h
Replay Cast
1d 22h
Epic.LAN
2 days
CranKy Ducklings
3 days
Epic.LAN
3 days
CSO Contender
3 days
[ Show More ]
BSL20 Non-Korean Champi…
3 days
Bonyth vs Sziky
Dewalt vs Hawk
Hawk vs QiaoGege
Sziky vs Dewalt
Mihu vs Bonyth
Zhanhun vs QiaoGege
QiaoGege vs Fengzi
Sparkling Tuna Cup
4 days
Online Event
4 days
BSL20 Non-Korean Champi…
4 days
Bonyth vs Zhanhun
Dewalt vs Mihu
Hawk vs Sziky
Sziky vs QiaoGege
Mihu vs Hawk
Zhanhun vs Dewalt
Fengzi vs Bonyth
Esports World Cup
6 days
ByuN vs Astrea
Lambo vs HeRoMaRinE
Clem vs TBD
Solar vs Zoun
SHIN vs Reynor
Maru vs TriGGeR
herO vs Lancer
Cure vs ShoWTimE
Liquipedia Results

Completed

CSL 17: 2025 SUMMER
RSL Revival: Season 1
Murky Cup #2

Ongoing

JPL Season 2
BSL 2v2 Season 3
Copa Latinoamericana 4
Jiahua Invitational
BSL20 Non-Korean Championship
Championship of Russia 2025
FISSURE Playground #1
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025
PGL Astana 2025
Asian Champions League '25
BLAST Rivals Spring 2025
MESA Nomadic Masters

Upcoming

CSL Xiamen Invitational
CSL Xiamen Invitational: ShowMatche
2025 ACS Season 2
CSLPRO Last Chance 2025
CSLPRO Chat StarLAN 3
BSL Season 21
K-Championship
RSL Revival: Season 2
SEL Season 2 Championship
uThermal 2v2 Main Event
FEL Cracov 2025
Esports World Cup 2025
Underdog Cup #2
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.