• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EDT 08:45
CEST 14:45
KST 21:45
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
[ASL19] Finals Recap: Standing Tall8HomeStory Cup 27 - Info & Preview18Classic wins Code S Season 2 (2025)16Code S RO4 & Finals Preview: herO, Rogue, Classic, GuMiho0TL Team Map Contest #5: Presented by Monster Energy6
Community News
Flash Announces Hiatus From ASL42Weekly Cups (June 23-29): Reynor in world title form?12FEL Cracov 2025 (July 27) - $8000 live event16Esports World Cup 2025 - Final Player Roster16Weekly Cups (June 16-22): Clem strikes back1
StarCraft 2
General
RELIABLE USDT RECOVERY SERVICE//TECHY FORCE CYBER The SCII GOAT: A statistical Evaluation Statistics for vetoed/disliked maps Esports World Cup 2025 - Final Player Roster How does the number of casters affect your enjoyment of esports?
Tourneys
RSL: Revival, a new crowdfunded tournament series [GSL 2025] Code S: Season 2 - Semi Finals & Finals $5,100+ SEL Season 2 Championship (SC: Evo) FEL Cracov 2025 (July 27) - $8000 live event HomeStory Cup 27 (June 27-29)
Strategy
How did i lose this ZvP, whats the proper response Simple Questions Simple Answers
Custom Maps
[UMS] Zillion Zerglings
External Content
Mutation # 480 Moths to the Flame Mutation # 479 Worn Out Welcome Mutation # 478 Instant Karma Mutation # 477 Slow and Steady
Brood War
General
Flash Announces Hiatus From ASL BW General Discussion [ASL19] Finals Recap: Standing Tall BGH Auto Balance -> http://bghmmr.eu/ Help: rep cant save
Tourneys
[Megathread] Daily Proleagues [BSL20] GosuLeague RO16 - Tue & Wed 20:00+CET The Casual Games of the Week Thread [BSL20] ProLeague LB Final - Saturday 20:00 CET
Strategy
Simple Questions, Simple Answers I am doing this better than progamers do.
Other Games
General Games
Stormgate/Frost Giant Megathread Nintendo Switch Thread Path of Exile What do you want from future RTS games? Beyond All Reason
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Heroes of StarCraft mini-set
TL Mafia
TL Mafia Community Thread Vanilla Mini Mafia
Community
General
US Politics Mega-thread Russo-Ukrainian War Thread Things Aren’t Peaceful in Palestine Trading/Investing Thread The Games Industry And ATVI
Fan Clubs
SKT1 Classic Fan Club! Maru Fan Club
Media & Entertainment
Anime Discussion Thread [Manga] One Piece [\m/] Heavy Metal Thread
Sports
2024 - 2025 Football Thread NBA General Discussion Formula 1 Discussion TeamLiquid Health and Fitness Initiative For 2023 NHL Playoffs 2024
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
Blogs
from making sc maps to makin…
Husyelt
Blog #2
tankgirl
Game Sound vs. Music: The Im…
TrAiDoS
StarCraft improvement
iopq
Heero Yuy & the Tax…
KrillinFromwales
Trip to the Zoo
micronesia
Customize Sidebar...

Website Feedback

Closed Threads



Active: 652 users

Math Puzzle [num 17]

Blogs > evanthebouncy!
Post a Reply
Normal
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
Last Edited: 2010-08-18 19:58:37
August 18 2010 19:51 GMT
#1
It's been awhile huh!! Here goes!

Again, hide answer in spoilers. And good luck!

You have a broken calculator with only these buttons working:
sin
cos
tan
cot
sin^-1
cos^-1
tan^-1
cot^-1

where when I say sin^-1 I mean the inverse of sine, not one over sine.
i.e. sine(sine-1(x)) = x for x between -1 and 1.

Your calculator now show 0. How do you, after a finite number of pressing buttons, make ANY positive rational number to appear on your screen?

Ahaha maybe there's some confusion, by ANY positive rational number, I mean this:
If I want to make 15/23 appear, I can do it.
If I want to make any p/q appear, where p, q in natural number, and p, q has no common divisors, I can make it happen after finite number of moves.

sorry! xD

*****
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
KumquatExpress
Profile Joined October 2009
United States344 Posts
Last Edited: 2010-08-18 20:03:35
August 18 2010 19:54 GMT
#2
+ Show Spoiler +
...Wouldn't you just press cosine? Unless there's something I'm not getting here..
Edit: I see your edit. Will ponder now.
Speedythinggoesin, speedythingcomesout.
blabber
Profile Blog Joined June 2007
United States4448 Posts
August 18 2010 19:56 GMT
#3
+ Show Spoiler +
maybe I don't understand the question correctly, but wouldn't just pressing cos give you 1?
blabberrrrr
infinitestory
Profile Blog Joined April 2010
United States4053 Posts
Last Edited: 2010-08-18 20:29:19
August 18 2010 20:01 GMT
#4
a start
+ Show Spoiler +
Things we can do:
1. arctan(cot(x)) = arccot(tan(x)) = 1/x
2. arcsin(cos(x)) = arccos(sin(x)) = sqrt(1-x^2)
3. arctan(sin(x)) = arccot(cos(x)) = x/sqrt(1-x^2)
4. arcsin(tan(x)) = arccos(cot(x)) = x/sqrt(1+x^2)
5. arccos(tan(x)) = arcsin(cot(x)) = 1/sqrt(1+x^2)
(there is a sixth non-identity operation, but it's equivalent to 1 applied to 3.)

EDIT: redefinition of 1-5 for x = a/b (just need to put this down somewhere)
1. b/a
2. sqrt(b^2-a^2)/b
3. a/sqrt(b^2-a^2)
4. a/sqrt(b^2+a^2)
5. 1/sqrt(b^2+a^2)

will work on it

EDIT: You can get any fraction of the form a/1 or 1/a.
Obviously, 1 applied to 5 is sqrt(1+x^2).
Repeatedly applying this gives sqrt(2), ..... to infinity.
Contained in this sequence are sqrt(4) = 2, sqrt(9) = 3, etc.
We can apply 1 to those to get 1/2, 1/3, etc.


Edited, made progress
Translator:3
evanthebouncy!
Profile Blog Joined June 2006
United States12796 Posts
August 18 2010 20:10 GMT
#5
On August 19 2010 05:01 infinitestory wrote:
a start
+ Show Spoiler +
Things we can do:
1. arctan(cot(x)) = arccot(tan(x)) = 1/x
2. arcsin(cos(x)) = arccos(sin(x)) = sqrt(1-x^2)
3. arctan(sin(x)) = arccot(cos(x)) = x/sqrt(1-x^2)
4. arcsin(tan(x)) = arccos(cot(x)) = x/sqrt(1+x^2)
5. arccos(tan(x)) = arcsin(cot(x)) = 1/sqrt(1+x^2)
(there is a sixth non-identity operation, but it's equivalent to 1 applied to 3.)

will work on it

EDIT: You can get any fraction of the form a/1 or 1/a.
Obviously, 1 applied to 5 is sqrt(1+x^2).
Repeatedly applying this gives sqrt(2), ..... to infinity.
Contained in this sequence are sqrt(4) = 2, sqrt(9) = 3, etc.
We can apply 1 to those to get 1/2, 1/3, etc.


Edited, made progress


we're getting somewhere
Life is run, it is dance, it is fast, passionate and BAM!, you dance and sing and booze while you can for now is the time and time is mine. Smile and laugh when still can for now is the time and soon you die!
BajaBlood
Profile Joined August 2009
United States205 Posts
August 18 2010 20:33 GMT
#6
On August 19 2010 05:01 infinitestory wrote:
a start
+ Show Spoiler +
Things we can do:
1. arctan(cot(x)) = arccot(tan(x)) = 1/x
2. arcsin(cos(x)) = arccos(sin(x)) = sqrt(1-x^2)
3. arctan(sin(x)) = arccot(cos(x)) = x/sqrt(1-x^2)
4. arcsin(tan(x)) = arccos(cot(x)) = x/sqrt(1+x^2)
5. arccos(tan(x)) = arcsin(cot(x)) = 1/sqrt(1+x^2)
(there is a sixth non-identity operation, but it's equivalent to 1 applied to 3.)

EDIT: redefinition of 1-5 for x = a/b (just need to put this down somewhere)
1. b/a
2. sqrt(b^2-a^2)/b
3. a/sqrt(b^2-a^2)
4. a/sqrt(b^2+a^2)
5. 1/sqrt(b^2+a^2)

will work on it

EDIT: You can get any fraction of the form a/1 or 1/a.
Obviously, 1 applied to 5 is sqrt(1+x^2).
Repeatedly applying this gives sqrt(2), ..... to infinity.
Contained in this sequence are sqrt(4) = 2, sqrt(9) = 3, etc.
We can apply 1 to those to get 1/2, 1/3, etc.


Edited, made progress


+ Show Spoiler +

I can't vouch for the truth/falsehood of the above. But if you can create a system for 1/a, then simply typing 'b' before the operation should yield the desired fraction.

barccot(tan(a)) = b/a

Unless it's cheating to use the implied multiplication


Empyrean
Profile Blog Joined September 2004
16978 Posts
August 18 2010 20:35 GMT
#7
The calculator doesn't have number buttons.
Moderator
infinitestory
Profile Blog Joined April 2010
United States4053 Posts
Last Edited: 2010-08-18 20:51:55
August 18 2010 20:35 GMT
#8
On August 19 2010 05:33 BajaBlood wrote:
Show nested quote +
On August 19 2010 05:01 infinitestory wrote:
a start
+ Show Spoiler +
Things we can do:
1. arctan(cot(x)) = arccot(tan(x)) = 1/x
2. arcsin(cos(x)) = arccos(sin(x)) = sqrt(1-x^2)
3. arctan(sin(x)) = arccot(cos(x)) = x/sqrt(1-x^2)
4. arcsin(tan(x)) = arccos(cot(x)) = x/sqrt(1+x^2)
5. arccos(tan(x)) = arcsin(cot(x)) = 1/sqrt(1+x^2)
(there is a sixth non-identity operation, but it's equivalent to 1 applied to 3.)

EDIT: redefinition of 1-5 for x = a/b (just need to put this down somewhere)
1. b/a
2. sqrt(b^2-a^2)/b
3. a/sqrt(b^2-a^2)
4. a/sqrt(b^2+a^2)
5. 1/sqrt(b^2+a^2)

will work on it

EDIT: You can get any fraction of the form a/1 or 1/a.
Obviously, 1 applied to 5 is sqrt(1+x^2).
Repeatedly applying this gives sqrt(2), ..... to infinity.
Contained in this sequence are sqrt(4) = 2, sqrt(9) = 3, etc.
We can apply 1 to those to get 1/2, 1/3, etc.


Edited, made progress


+ Show Spoiler +

I can't vouch for the truth/falsehood of the above. But if you can create a system for 1/a, then simply typing 'b' before the operation should yield the desired fraction.

barccot(tan(a)) = b/a

Unless it's cheating to use the implied multiplication




You can't type them, only obtain them by result of an operation

EDIT: solved
+ Show Spoiler +

As I stated above, sqrt(a/1) is possible.
But sqrt(a/2) is also possible.
If a is divisible by 2, then it just reduces to sqrt((a/2)/1), this gives us sqrt(2/2), sqrt(4/2), forever
If a is not divisible by 2, well
apply operation 1 to sqrt(2/1) to get sqrt(1/2)
apply operation 5 to that repeatedly to get sqrt(3/2), sqrt(5/2), forever

Now let us induct on n, using the same process.
Say we can get sqrt(a/1), sqrt(a/2), sqrt(a/3), ... ,sqrt(a/n) for any n
then, take sqrt((n+1)/1), sqrt((n+1)/2), ..., sqrt((n+1)/n) and apply operation 1 to them all
this gives sqrt(1/(n+1)), sqrt(2/(n+1)), ..., sqrt(n/(n+1)).
If we apply operation 5 to all of these, we can get sqrt(a/(n+1)) for any n.

But this gives us the square root of any rational number, so we can obtain any m/n by obtaining sqrt(m^2/n^2).
Translator:3
Roggles
Profile Joined December 2009
United States38 Posts
August 18 2010 21:42 GMT
#9
On August 19 2010 05:35 infinitestory wrote:
Show nested quote +
On August 19 2010 05:33 BajaBlood wrote:
On August 19 2010 05:01 infinitestory wrote:
a start
+ Show Spoiler +
Things we can do:
1. arctan(cot(x)) = arccot(tan(x)) = 1/x
2. arcsin(cos(x)) = arccos(sin(x)) = sqrt(1-x^2)
3. arctan(sin(x)) = arccot(cos(x)) = x/sqrt(1-x^2)
4. arcsin(tan(x)) = arccos(cot(x)) = x/sqrt(1+x^2)
5. arccos(tan(x)) = arcsin(cot(x)) = 1/sqrt(1+x^2)
(there is a sixth non-identity operation, but it's equivalent to 1 applied to 3.)

EDIT: redefinition of 1-5 for x = a/b (just need to put this down somewhere)
1. b/a
2. sqrt(b^2-a^2)/b
3. a/sqrt(b^2-a^2)
4. a/sqrt(b^2+a^2)
5. 1/sqrt(b^2+a^2)

will work on it

EDIT: You can get any fraction of the form a/1 or 1/a.
Obviously, 1 applied to 5 is sqrt(1+x^2).
Repeatedly applying this gives sqrt(2), ..... to infinity.
Contained in this sequence are sqrt(4) = 2, sqrt(9) = 3, etc.
We can apply 1 to those to get 1/2, 1/3, etc.


Edited, made progress


+ Show Spoiler +

I can't vouch for the truth/falsehood of the above. But if you can create a system for 1/a, then simply typing 'b' before the operation should yield the desired fraction.

barccot(tan(a)) = b/a

Unless it's cheating to use the implied multiplication




You can't type them, only obtain them by result of an operation

EDIT: solved
+ Show Spoiler +

As I stated above, sqrt(a/1) is possible.
But sqrt(a/2) is also possible.
If a is divisible by 2, then it just reduces to sqrt((a/2)/1), this gives us sqrt(2/2), sqrt(4/2), forever
If a is not divisible by 2, well
apply operation 1 to sqrt(2/1) to get sqrt(1/2)
apply operation 5 to that repeatedly to get sqrt(3/2), sqrt(5/2), forever

Now let us induct on n, using the same process.
Say we can get sqrt(a/1), sqrt(a/2), sqrt(a/3), ... ,sqrt(a/n) for any n
then, take sqrt((n+1)/1), sqrt((n+1)/2), ..., sqrt((n+1)/n) and apply operation 1 to them all
this gives sqrt(1/(n+1)), sqrt(2/(n+1)), ..., sqrt(n/(n+1)).
If we apply operation 5 to all of these, we can get sqrt(a/(n+1)) for any n.

But this gives us the square root of any rational number, so we can obtain any m/n by obtaining sqrt(m^2/n^2).


how can you assume that you can get sqrt(a/n) for any n?

applying 1+5 only gets you sqrt(1+x^2). if you apply it again, you will get sqrt(2+x^2) etc. your claim is that by taking sqrt(2) and applying 1/x to make it sqrt(1/2), you can obtain sqrt(3/2), sqrt(5/2) etc as well, which is perfectly fine. However, if you tried it with sqrt(3), it would become sqrt(1/3), and then you would have a sequence of sqrt(1/3), sqrt (4/3), sqrt(7/3). combined with the natural numbers, you would get sqrts of 1/3, 3/3, 4/3, 6/3, etc. but we're missing the 2/3, 5/3, etc.

the 1+5 algorithm, when applied recursively, will take a fraction sqrt(a/b) and turn it into sqrt(1+a/b). therefore you will get the sqrt of a/b, (b+a)/b, (2b+a)/b, etc. which does not properly fill in the fractions between a/b and (b+a)/b.

tell me if I'm missing something stupid though...
infinitestory
Profile Blog Joined April 2010
United States4053 Posts
August 18 2010 21:53 GMT
#10
On August 19 2010 06:42 Roggles wrote:
Show nested quote +
On August 19 2010 05:35 infinitestory wrote:
On August 19 2010 05:33 BajaBlood wrote:
On August 19 2010 05:01 infinitestory wrote:
a start
+ Show Spoiler +
Things we can do:
1. arctan(cot(x)) = arccot(tan(x)) = 1/x
2. arcsin(cos(x)) = arccos(sin(x)) = sqrt(1-x^2)
3. arctan(sin(x)) = arccot(cos(x)) = x/sqrt(1-x^2)
4. arcsin(tan(x)) = arccos(cot(x)) = x/sqrt(1+x^2)
5. arccos(tan(x)) = arcsin(cot(x)) = 1/sqrt(1+x^2)
(there is a sixth non-identity operation, but it's equivalent to 1 applied to 3.)

EDIT: redefinition of 1-5 for x = a/b (just need to put this down somewhere)
1. b/a
2. sqrt(b^2-a^2)/b
3. a/sqrt(b^2-a^2)
4. a/sqrt(b^2+a^2)
5. 1/sqrt(b^2+a^2)

will work on it

EDIT: You can get any fraction of the form a/1 or 1/a.
Obviously, 1 applied to 5 is sqrt(1+x^2).
Repeatedly applying this gives sqrt(2), ..... to infinity.
Contained in this sequence are sqrt(4) = 2, sqrt(9) = 3, etc.
We can apply 1 to those to get 1/2, 1/3, etc.


Edited, made progress


+ Show Spoiler +

I can't vouch for the truth/falsehood of the above. But if you can create a system for 1/a, then simply typing 'b' before the operation should yield the desired fraction.

barccot(tan(a)) = b/a

Unless it's cheating to use the implied multiplication




You can't type them, only obtain them by result of an operation

EDIT: solved
+ Show Spoiler +

As I stated above, sqrt(a/1) is possible.
But sqrt(a/2) is also possible.
If a is divisible by 2, then it just reduces to sqrt((a/2)/1), this gives us sqrt(2/2), sqrt(4/2), forever
If a is not divisible by 2, well
apply operation 1 to sqrt(2/1) to get sqrt(1/2)
apply operation 5 to that repeatedly to get sqrt(3/2), sqrt(5/2), forever

Now let us induct on n, using the same process.
Say we can get sqrt(a/1), sqrt(a/2), sqrt(a/3), ... ,sqrt(a/n) for any n
then, take sqrt((n+1)/1), sqrt((n+1)/2), ..., sqrt((n+1)/n) and apply operation 1 to them all
this gives sqrt(1/(n+1)), sqrt(2/(n+1)), ..., sqrt(n/(n+1)).
If we apply operation 5 to all of these, we can get sqrt(a/(n+1)) for any n.

But this gives us the square root of any rational number, so we can obtain any m/n by obtaining sqrt(m^2/n^2).

+ Show Spoiler +


how can you assume that you can get sqrt(a/n) for any n?

applying 1+5 only gets you sqrt(1+x^2). if you apply it again, you will get sqrt(2+x^2) etc. your claim is that by taking sqrt(2) and applying 1/x to make it sqrt(1/2), you can obtain sqrt(3/2), sqrt(5/2) etc as well, which is perfectly fine. However, if you tried it with sqrt(3), it would become sqrt(1/3), and then you would have a sequence of sqrt(1/3), sqrt (4/3), sqrt(7/3). combined with the natural numbers, you would get sqrts of 1/3, 3/3, 4/3, 6/3, etc. but we're missing the 2/3, 5/3, etc.

the 1+5 algorithm, when applied recursively, will take a fraction sqrt(a/b) and turn it into sqrt(1+a/b). therefore you will get the sqrt of a/b, (b+a)/b, (2b+a)/b, etc. which does not properly fill in the fractions between a/b and (b+a)/b.

tell me if I'm missing something stupid though...


+ Show Spoiler +

You get sqrt(2/2), sqrt(4/2), sqrt(6/2), etc. because they are equal to sqrt(1), sqrt(2), etc.

You get sqrt(2/3) by flipping sqrt(3/2)
Translator:3
jalstar
Profile Blog Joined September 2009
United States8198 Posts
August 18 2010 21:58 GMT
#11
+ Show Spoiler +
You can't. You don't have an "=" button.
Hypnosis
Profile Blog Joined October 2007
United States2061 Posts
August 18 2010 22:01 GMT
#12
where do you get these problems? i feel like i missed something in calc or something because im done with calc 3 already and idk those identities for shit! Maybe i should review my trig proofs haha
Science without religion is lame, Religion without science is blind
infinitestory
Profile Blog Joined April 2010
United States4053 Posts
Last Edited: 2010-08-18 22:03:17
August 18 2010 22:01 GMT
#13
On August 19 2010 06:58 jalstar wrote:
+ Show Spoiler +
You can't. You don't have an "=" button.

+ Show Spoiler +
Pressing the operator also shows the answer. Old school way.


EDIT: @hypnosis: this is a classic contest math algebra problem (I'm kinda cheating since I solved it a couple years ago, then forgot the solution)
Translator:3
Roggles
Profile Joined December 2009
United States38 Posts
August 18 2010 22:04 GMT
#14
On August 19 2010 06:53 infinitestory wrote:
Show nested quote +
On August 19 2010 06:42 Roggles wrote:
On August 19 2010 05:35 infinitestory wrote:
On August 19 2010 05:33 BajaBlood wrote:
On August 19 2010 05:01 infinitestory wrote:
a start
+ Show Spoiler +
Things we can do:
1. arctan(cot(x)) = arccot(tan(x)) = 1/x
2. arcsin(cos(x)) = arccos(sin(x)) = sqrt(1-x^2)
3. arctan(sin(x)) = arccot(cos(x)) = x/sqrt(1-x^2)
4. arcsin(tan(x)) = arccos(cot(x)) = x/sqrt(1+x^2)
5. arccos(tan(x)) = arcsin(cot(x)) = 1/sqrt(1+x^2)
(there is a sixth non-identity operation, but it's equivalent to 1 applied to 3.)

EDIT: redefinition of 1-5 for x = a/b (just need to put this down somewhere)
1. b/a
2. sqrt(b^2-a^2)/b
3. a/sqrt(b^2-a^2)
4. a/sqrt(b^2+a^2)
5. 1/sqrt(b^2+a^2)

will work on it

EDIT: You can get any fraction of the form a/1 or 1/a.
Obviously, 1 applied to 5 is sqrt(1+x^2).
Repeatedly applying this gives sqrt(2), ..... to infinity.
Contained in this sequence are sqrt(4) = 2, sqrt(9) = 3, etc.
We can apply 1 to those to get 1/2, 1/3, etc.


Edited, made progress


+ Show Spoiler +

I can't vouch for the truth/falsehood of the above. But if you can create a system for 1/a, then simply typing 'b' before the operation should yield the desired fraction.

barccot(tan(a)) = b/a

Unless it's cheating to use the implied multiplication




You can't type them, only obtain them by result of an operation

EDIT: solved
+ Show Spoiler +

As I stated above, sqrt(a/1) is possible.
But sqrt(a/2) is also possible.
If a is divisible by 2, then it just reduces to sqrt((a/2)/1), this gives us sqrt(2/2), sqrt(4/2), forever
If a is not divisible by 2, well
apply operation 1 to sqrt(2/1) to get sqrt(1/2)
apply operation 5 to that repeatedly to get sqrt(3/2), sqrt(5/2), forever

Now let us induct on n, using the same process.
Say we can get sqrt(a/1), sqrt(a/2), sqrt(a/3), ... ,sqrt(a/n) for any n
then, take sqrt((n+1)/1), sqrt((n+1)/2), ..., sqrt((n+1)/n) and apply operation 1 to them all
this gives sqrt(1/(n+1)), sqrt(2/(n+1)), ..., sqrt(n/(n+1)).
If we apply operation 5 to all of these, we can get sqrt(a/(n+1)) for any n.

But this gives us the square root of any rational number, so we can obtain any m/n by obtaining sqrt(m^2/n^2).

+ Show Spoiler +


how can you assume that you can get sqrt(a/n) for any n?

applying 1+5 only gets you sqrt(1+x^2). if you apply it again, you will get sqrt(2+x^2) etc. your claim is that by taking sqrt(2) and applying 1/x to make it sqrt(1/2), you can obtain sqrt(3/2), sqrt(5/2) etc as well, which is perfectly fine. However, if you tried it with sqrt(3), it would become sqrt(1/3), and then you would have a sequence of sqrt(1/3), sqrt (4/3), sqrt(7/3). combined with the natural numbers, you would get sqrts of 1/3, 3/3, 4/3, 6/3, etc. but we're missing the 2/3, 5/3, etc.

the 1+5 algorithm, when applied recursively, will take a fraction sqrt(a/b) and turn it into sqrt(1+a/b). therefore you will get the sqrt of a/b, (b+a)/b, (2b+a)/b, etc. which does not properly fill in the fractions between a/b and (b+a)/b.

tell me if I'm missing something stupid though...


+ Show Spoiler +

You get sqrt(2/2), sqrt(4/2), sqrt(6/2), etc. because they are equal to sqrt(1), sqrt(2), etc.

You get sqrt(2/3) by flipping sqrt(3/2)


+ Show Spoiler +

oh yeah that's right...we've filled in a/1 and a/2, and the different values for (a mod 3)/3 can be obtained by flipping previous values. so 1/3 can be gotten from flipping 3/1, and 2/3 can be gotten from flipping 3/2, and therefore a/3 is filled. and this pattern stacks on top of itself recursively.

just wanted a little clarification, sorry. I missed that little jump in the logic.
icystorage
Profile Blog Joined November 2008
Jollibee19343 Posts
August 18 2010 22:11 GMT
#15
On August 19 2010 05:35 Empyrean wrote:
The calculator doesn't have number buttons.

i think that's the challenge of the problem
LiquidDota StaffAre you ready for a Miracle-? We are! The International 2017 Champions!
FiBsTeR
Profile Blog Joined February 2008
United States415 Posts
August 18 2010 22:13 GMT
#16
I remember solving this when preparing for USAMO... I think this was on a past one.
]343[
Profile Blog Joined May 2008
United States10328 Posts
Last Edited: 2010-08-18 22:19:03
August 18 2010 22:18 GMT
#17
this is an old usamo problem

and VERY ANNOYING

+ Show Spoiler +

0: already exists

begin with cos 0 = 1.

now, notice that

f(x) = cot(arctan(x)) = 1/x
g_1(x) = cos(arctan(x)) = 1/sqrt(x^2+1)
g_2(x) = sin(arctan(x)) = x/sqrt(x^2+1)
h_1(x) = tan(arccos(x)) = sqrt(1-x^2)/x
h_2(x) = tan(arcsin(x)) = x/sqrt(1-x^2)
h_3(x) sin(arccos(x)) = sqrt(1-x^2)

so we can get any composition of these functions, applied to 1 or 0. call a number that can be reached by a sequence of keypresses "good." If n is good, so is 1/n, since 1/n = f(n). We will show that all numbers x such that x^2 is rational are good; this clearly implies the problem statement.

we only need to show that all rationals q less than 1 (and 1 is good) are good, since every rational greater than 1 is the reciprocal of a rational less than 1.

starting at 1, we find g_2(1) = 1/sqrt(2), g_2(g_2(1)) = 1/sqrt(3), and by induction, if g_2^(k)(1) = 1/sqrt(k+1) [where ^(k) means the function is composed k times], then g_2^(k+1)(1) = g_2(1/sqrt(k+1)) = (1/sqrt(k+1)) / (sqrt( (k+2)/(k+1) ) ) = 1/sqrt(k+2).

so all 1/sqrt(n), n a positive integer, can be reached.

furthermore, we find that all g_1(1/sqrt(n)) = sqrt(n/(n+1)) can be achieved.

Lemma. If sqrt(a/b) is good, so is sqrt(a/(ka+b)) for all nonnegative integers k.

Proof. Notice that g_2(sqrt(a/b)) = sqrt(a/(a+b)); by composing this repeatedly, by induction, we can achieve all sqrt(a/(ka+b)) for nonnegative integer k.

next, we use strong induction on the numerator of sqrt(a/b) to show that all square roots of rationals are good.

We can already construct all sqrt(1/b), so the base case is true.

Assume that for k = 1, 2, ..., n-1, sqrt(k/j) is good for all integers j.

Now, we need only show that all sqrt(n/j) are good, which would complete the induction. If gcd(j,n) = g > 1, then we can cancel g from the top and bottom and get a numerator between 1 and n inclusive, so the statement is true. Hence, we only need to consider cases where gcd(j,n)=1.

Otherwise, let j' be the smallest positive integer so that (j-j' ) is divisible by n; clearly j'<= n, and j' is not n because we don't need to consider when gcd(j,n)>1. Then sqrt(j'/k) is good by the induction hypothesis, so f(sqrt(j'/k)) = sqrt(k/j' ) is also good. Then by the lemma, we can construct all sqrt(k/(j'+k)), so we get all denominators that are j' mod k.

Since we have considered all residues mod k, the denominator can therefore be any positive integer, and the induction is complete.

Writer
Surrealz
Profile Blog Joined May 2010
United States449 Posts
August 18 2010 22:37 GMT
#18
On August 19 2010 07:18 ]343[ wrote:
this is an old usamo problem

and VERY ANNOYING

+ Show Spoiler +

0: already exists

begin with cos 0 = 1.

now, notice that

f(x) = cot(arctan(x)) = 1/x
g_1(x) = cos(arctan(x)) = 1/sqrt(x^2+1)
g_2(x) = sin(arctan(x)) = x/sqrt(x^2+1)
h_1(x) = tan(arccos(x)) = sqrt(1-x^2)/x
h_2(x) = tan(arcsin(x)) = x/sqrt(1-x^2)
h_3(x) sin(arccos(x)) = sqrt(1-x^2)

so we can get any composition of these functions, applied to 1 or 0. call a number that can be reached by a sequence of keypresses "good." If n is good, so is 1/n, since 1/n = f(n). We will show that all numbers x such that x^2 is rational are good; this clearly implies the problem statement.

we only need to show that all rationals q less than 1 (and 1 is good) are good, since every rational greater than 1 is the reciprocal of a rational less than 1.

starting at 1, we find g_2(1) = 1/sqrt(2), g_2(g_2(1)) = 1/sqrt(3), and by induction, if g_2^(k)(1) = 1/sqrt(k+1) [where ^(k) means the function is composed k times], then g_2^(k+1)(1) = g_2(1/sqrt(k+1)) = (1/sqrt(k+1)) / (sqrt( (k+2)/(k+1) ) ) = 1/sqrt(k+2).

so all 1/sqrt(n), n a positive integer, can be reached.

furthermore, we find that all g_1(1/sqrt(n)) = sqrt(n/(n+1)) can be achieved.

Lemma. If sqrt(a/b) is good, so is sqrt(a/(ka+b)) for all nonnegative integers k.

Proof. Notice that g_2(sqrt(a/b)) = sqrt(a/(a+b)); by composing this repeatedly, by induction, we can achieve all sqrt(a/(ka+b)) for nonnegative integer k.

next, we use strong induction on the numerator of sqrt(a/b) to show that all square roots of rationals are good.

We can already construct all sqrt(1/b), so the base case is true.

Assume that for k = 1, 2, ..., n-1, sqrt(k/j) is good for all integers j.

Now, we need only show that all sqrt(n/j) are good, which would complete the induction. If gcd(j,n) = g > 1, then we can cancel g from the top and bottom and get a numerator between 1 and n inclusive, so the statement is true. Hence, we only need to consider cases where gcd(j,n)=1.

Otherwise, let j' be the smallest positive integer so that (j-j' ) is divisible by n; clearly j'<= n, and j' is not n because we don't need to consider when gcd(j,n)>1. Then sqrt(j'/k) is good by the induction hypothesis, so f(sqrt(j'/k)) = sqrt(k/j' ) is also good. Then by the lemma, we can construct all sqrt(k/(j'+k)), so we get all denominators that are j' mod k.

Since we have considered all residues mod k, the denominator can therefore be any positive integer, and the induction is complete.



thank you sir
1a2a3a
palanq
Profile Blog Joined December 2004
United States761 Posts
August 18 2010 22:45 GMT
#19
since you have all the inverse functions, the problem is equivalent to taking any arbitrary rational number ( = a/b for some integers a and b) and turning it into zero. might be a useful approach going at it from the other direction
time flies like an arrow; fruit flies like a banana
TanGeng
Profile Blog Joined January 2009
Sanya12364 Posts
August 18 2010 22:59 GMT
#20
Incomplete
+ Show Spoiler +

method 1:
tan(cot-1(n)) = 1/n
so for any n=1/(a/b) you can also get to n=a/b

method 2:
cos(tan-1(n))) = 1/sq(n^2+1)
combined with method 1
tan(cot-1(cos(tan-1(sq(a)) = sq(a+1)
starting with 0, this pattern allows for all positive integers - but only for integers for now

now for some modulus:
some x where
x mod b is equivalent to a mod b
(x/b can be expressed as x/b+C where C is an integer)
x^2 mod b^2 is equivalent to x^2 mod b^2
also where
x mod b is equivalent to b - (x mod b)
x^2 mod b^2 is equivalent to x^2 mod b^2
this is less important though

in these cases n=x/b can be express as sq(x^2/b^2 + D) where D is some integer
combined with method 2, the conclusion is that given a/b you can get to any n=a/b+C where C is a positive integer

anyways the final piece of the puzzle is continued fractions where we want to express all rational numbers as
1/1/(1/ (a +C)+D) +E)....

I haven't gotten there yet.





Moderator我们是个踏实的赞助商模式俱乐部
GreatFall
Profile Blog Joined January 2010
United States1061 Posts
August 18 2010 23:04 GMT
#21
I'd buy a new calculator and still not be able to solve it!
Inventor of the 'Burning Tide' technique to quickly getting Outmatched Crusher achivement :D
blankspace
Profile Blog Joined June 2010
United States292 Posts
August 18 2010 23:29 GMT
#22
The solution idea is fairly simple but kinda annoying to write up (use strong induction)

+ Show Spoiler +
A: cot(arctanx) = 1/x
B: cos(arctanx) = 1/sqrt(1+x^2)

We can get 1 from 0 with cos. We can get 1/sqrt(n) for all n by doing this: B(1) = 1/sqrt2, B(A(1/sqrt2)) = 1/sqrt3 and etc.

We can get any sqrt(p/q). Suppose I wanted to get sqrt(23/14), well then if i could get sqrt(9/14) I'd be done (apply B and A). Then if I could get sqrt(14/9) I would be done (by A). Similarly if I could get sqrt(5/9), sqrt (9/5), sqrt (4/5), sqrt (5/4), sqrt(1/4) and then we done.

It's pretty easy to see this process has to terminate into form sqrt(1/n), it's euclidean algorithm with 2 relatively prime numbers p,q.



the old usamo problem did not have the cotangent key so 1/x was more annoying to get.
Hello friends
]343[
Profile Blog Joined May 2008
United States10328 Posts
August 18 2010 23:48 GMT
#23
On August 19 2010 08:29 blankspace wrote:
The solution idea is fairly simple but kinda annoying to write up (use strong induction)

+ Show Spoiler +
A: cot(arctanx) = 1/x
B: cos(arctanx) = 1/sqrt(1+x^2)

We can get 1 from 0 with cos. We can get 1/sqrt(n) for all n by doing this: B(1) = 1/sqrt2, B(A(1/sqrt2)) = 1/sqrt3 and etc.

We can get any sqrt(p/q). Suppose I wanted to get sqrt(23/14), well then if i could get sqrt(9/14) I'd be done (apply B and A). Then if I could get sqrt(14/9) I would be done (by A). Similarly if I could get sqrt(5/9), sqrt (9/5), sqrt (4/5), sqrt (5/4), sqrt(1/4) and then we done.

It's pretty easy to see this process has to terminate into form sqrt(1/n), it's euclidean algorithm with 2 relatively prime numbers p,q.



the old usamo problem did not have the cotangent key so 1/x was more annoying to get.


rofl euclidean algorithm. i am a retard. (wait i even saw that, kind of, ish... -____-)
Writer
Normal
Please log in or register to reply.
Live Events Refresh
RSL Revival
10:00
Season 1: Playoffs Day 1
Clem vs ChamLIVE!
Crank 1612
Tasteless603
IndyStarCraft 179
Rex151
3DClanTV 72
IntoTheiNu 58
LiquipediaDiscussion
The PondCast
10:00
Episode 53
Liquipedia
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
Crank 1612
Tasteless 603
Lowko328
Harstem 264
IndyStarCraft 179
Rex 151
ProTech62
StarCraft: Brood War
Britney 45333
Rain 4194
Sea 3559
Horang2 2994
Jaedong 1244
EffOrt 775
BeSt 561
Larva 489
actioN 333
Stork 312
[ Show more ]
Mini 270
ToSsGirL 211
Last 204
Light 198
Snow 158
ZerO 156
Killer 134
Sharp 67
Mong 61
hero 59
Pusan 58
Mind 51
Rush 40
Shinee 36
Nal_rA 32
ajuk12(nOOB) 26
Noble 26
sSak 25
JulyZerg 23
yabsab 17
soO 16
Sacsri 13
NaDa 12
sorry 12
Movie 11
SilentControl 8
IntoTheRainbow 8
Bale 3
Dota 2
qojqva1639
420jenkins478
XcaliburYe441
BananaSlamJamma426
Counter-Strike
x6flipin723
allub208
oskar162
byalli157
Super Smash Bros
Mew2King164
Other Games
B2W.Neo861
DeMusliM551
hiko440
crisheroes302
Pyrionflax131
ArmadaUGS48
ZerO(Twitch)14
QueenE5
Organizations
StarCraft 2
ComeBackTV 1033
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 14 non-featured ]
StarCraft 2
• StrangeGG 39
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• iopq 2
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• WagamamaTV537
League of Legends
• Nemesis4403
Upcoming Events
WardiTV European League
3h 15m
ByuN vs NightPhoenix
HeRoMaRinE vs HiGhDrA
Krystianer vs sebesdes
MaxPax vs Babymarine
SKillous vs Mixu
ShoWTimE vs MaNa
Replay Cast
11h 15m
RSL Revival
21h 15m
herO vs SHIN
Reynor vs Cure
OSC
1d
WardiTV European League
1d 3h
Scarlett vs Percival
Jumy vs ArT
YoungYakov vs Shameless
uThermal vs Fjant
Nicoract vs goblin
Harstem vs Gerald
FEL
1d 3h
Korean StarCraft League
1d 14h
CranKy Ducklings
1d 21h
RSL Revival
1d 21h
FEL
2 days
[ Show More ]
Sparkling Tuna Cup
2 days
RSL Revival
2 days
FEL
2 days
BSL: ProLeague
3 days
Dewalt vs Bonyth
Replay Cast
4 days
Replay Cast
4 days
The PondCast
5 days
Replay Cast
6 days
RSL Revival
6 days
Liquipedia Results

Completed

Proleague 2025-06-28
HSC XXVII
Heroes 10 EU

Ongoing

JPL Season 2
BSL 2v2 Season 3
BSL Season 20
Acropolis #3
KCM Race Survival 2025 Season 2
CSL 17: 2025 SUMMER
Copa Latinoamericana 4
Championship of Russia 2025
RSL Revival: Season 1
Murky Cup #2
BLAST.tv Austin Major 2025
ESL Impact League Season 7
IEM Dallas 2025
PGL Astana 2025
Asian Champions League '25
BLAST Rivals Spring 2025
MESA Nomadic Masters
CCT Season 2 Global Finals
IEM Melbourne 2025
YaLLa Compass Qatar 2025

Upcoming

CSLPRO Last Chance 2025
CSLPRO Chat StarLAN 3
K-Championship
uThermal 2v2 Main Event
SEL Season 2 Championship
FEL Cracov 2025
Esports World Cup 2025
StarSeries Fall 2025
FISSURE Playground #2
BLAST Open Fall 2025
BLAST Open Fall Qual
Esports World Cup 2025
BLAST Bounty Fall 2025
BLAST Bounty Fall Qual
IEM Cologne 2025
FISSURE Playground #1
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.