• Log InLog In
  • Register
Liquid`
Team Liquid Liquipedia
EST 11:04
CET 17:04
KST 01:04
  • Home
  • Forum
  • Calendar
  • Streams
  • Liquipedia
  • Features
  • Store
  • EPT
  • TL+
  • StarCraft 2
  • Brood War
  • Smash
  • Heroes
  • Counter-Strike
  • Overwatch
  • Liquibet
  • Fantasy StarCraft
  • TLPD
  • StarCraft 2
  • Brood War
  • Blogs
Forum Sidebar
Events/Features
News
Featured News
RSL Season 3 - Playoffs Preview0RSL Season 3 - RO16 Groups C & D Preview0RSL Season 3 - RO16 Groups A & B Preview2TL.net Map Contest #21: Winners12Intel X Team Liquid Seoul event: Showmatches and Meet the Pros10
Community News
Weekly Cups (Nov 24-30): MaxPax, Clem, herO win2BGE Stara Zagora 2026 announced15[BSL21] Ro.16 Group Stage (C->B->A->D)4Weekly Cups (Nov 17-23): Solar, MaxPax, Clem win3RSL Season 3: RO16 results & RO8 bracket13
StarCraft 2
General
Chinese SC2 server to reopen; live all-star event in Hangzhou Maestros of the Game: Live Finals Preview (RO4) BGE Stara Zagora 2026 announced Weekly Cups (Nov 24-30): MaxPax, Clem, herO win SC2 Proleague Discontinued; SKT, KT, SGK, CJ disband
Tourneys
Sea Duckling Open (Global, Bronze-Diamond) $5,000+ WardiTV 2025 Championship Constellation Cup - Main Event - Stellar Fest RSL Revival: Season 3 Tenacious Turtle Tussle
Strategy
Custom Maps
Map Editor closed ?
External Content
Mutation # 502 Negative Reinforcement Mutation # 501 Price of Progress Mutation # 500 Fright night Mutation # 499 Chilling Adaptation
Brood War
General
BGH Auto Balance -> http://bghmmr.eu/ Data analysis on 70 million replays Which season is the best in ASL? [ASL20] Ask the mapmakers — Drop your questions BW General Discussion
Tourneys
[Megathread] Daily Proleagues [BSL21] RO16 Group B - Sunday 21:00 CET [BSL21] RO16 Group C - Saturday 21:00 CET Small VOD Thread 2.0
Strategy
Game Theory for Starcraft How to stay on top of macro? Current Meta PvZ map balance
Other Games
General Games
Stormgate/Frost Giant Megathread Nintendo Switch Thread The Perfect Game Path of Exile Should offensive tower rushing be viable in RTS games?
Dota 2
Official 'what is Dota anymore' discussion
League of Legends
Heroes of the Storm
Simple Questions, Simple Answers Heroes of the Storm 2.0
Hearthstone
Deck construction bug Heroes of StarCraft mini-set
TL Mafia
Mafia Game Mode Feedback/Ideas TL Mafia Community Thread
Community
General
Russo-Ukrainian War Thread Things Aren’t Peaceful in Palestine US Politics Mega-thread The Big Programming Thread Artificial Intelligence Thread
Fan Clubs
White-Ra Fan Club
Media & Entertainment
[Manga] One Piece Movie Discussion! Anime Discussion Thread
Sports
2024 - 2026 Football Thread Formula 1 Discussion NBA General Discussion
World Cup 2022
Tech Support
Computer Build, Upgrade & Buying Resource Thread
TL Community
Where to ask questions and add stream? The Automated Ban List
Blogs
James Bond movies ranking - pa…
Topin
Esports Earnings: Bigger Pri…
TrAiDoS
Thanks for the RSL
Hildegard
Saturation point
Uldridge
Customize Sidebar...

Website Feedback

Closed Threads



Active: 1228 users

math help?

Blogs > Oxygen
Post a Reply
Normal
Oxygen
Profile Blog Joined November 2003
Canada3581 Posts
Last Edited: 2010-05-21 22:26:46
May 21 2010 22:18 GMT
#1
trying to remember some math and I don't know why this isn't working

given

[image loading]


show that

[image loading]



we differentiate G with respect to x

[image loading]


now I would think the previous step is correct, but then when I differentiate Gx (first derivative of G with respect to x) a second time I get a pretty big expression and I can't reduce it all. I think I'm already making a mistake somewhere... if someone could just tell me if the following expression is correct, I can do the rest

[image loading]



thoughts?


*
Dont drink and derive. TSL: Made with Balls.
kingjames01
Profile Blog Joined April 2009
Canada1603 Posts
May 21 2010 22:28 GMT
#2
In your original line, G(x, y) = F(\frac{x}{x^{2} + y^{2}}, \frac{y}{x^{2} + y^{2}}),
is it implied that
u = \frac{x}{x^{2} + y^{2}}
and
v = \frac{y}{x^{2} + y^{2}}

or is it that x and y are functions of u and v? I'll work on this but I don't want to put any effort in until this is clarified.
Who would sup with the mighty, must walk the path of daggers.
Oxygen
Profile Blog Joined November 2003
Canada3581 Posts
May 21 2010 22:33 GMT
#3
that's the thing, I'm uncertain, that's how the question is worded. before you get to work on it let me do it with u = \frac{x} ...
sec
Dont drink and derive. TSL: Made with Balls.
kingjames01
Profile Blog Joined April 2009
Canada1603 Posts
May 21 2010 22:41 GMT
#4
Well, I went ahead and worked it out.
If G(x, y) = F(u, v) the way that you have it defined above, then when you go to calculate,
\frac{\partial^{2} G}{\partial x^{2}} + \frac{\partial^{2} G}{\partial y^{2}}
the mixed partials will cancel and then you'll have
\frac{\partial^{2} F}{\partial x^{2}} + \frac{\partial^{2} F}{\partial y^{2}} multiplied by a common multiple that can be factored out... which will result in 0.
Who would sup with the mighty, must walk the path of daggers.
Rkie
Profile Blog Joined October 2009
United States1278 Posts
May 21 2010 22:48 GMT
#5
what does the backwards 6 mean?
kingjames01
Profile Blog Joined April 2009
Canada1603 Posts
May 21 2010 22:52 GMT
#6
It means "a partial derivative with respect to"
so in the above case,
it says that G is a function of both x and y and to take two derivatives of G with respect to only x while keeping y constant and summing that with the second partial derivative of G with respect to only y while keeping x constant. This sum is supposed to be equal to 0 which it turns out is true.
Who would sup with the mighty, must walk the path of daggers.
DeathByMonkeys
Profile Blog Joined March 2008
United States742 Posts
May 21 2010 22:52 GMT
#7
On May 22 2010 07:48 Rkie wrote:
what does the backwards 6 mean?


Haha, it's the partial derivative.
Rotation
Profile Blog Joined July 2009
United States118 Posts
Last Edited: 2010-05-21 22:53:10
May 21 2010 22:52 GMT
#8
On May 22 2010 07:48 Rkie wrote:
what does the backwards 6 mean?


It's a partial derivative

EDIT: beaten to it.
kingjames01
Profile Blog Joined April 2009
Canada1603 Posts
May 21 2010 22:56 GMT
#9
Also, it's not a backwards 6... hehe.
It's actually the scripted form of the lower case Greek letter delta. It's similar to the use of the upper case Greek delta to mean "change in".
Who would sup with the mighty, must walk the path of daggers.
DeathByMonkeys
Profile Blog Joined March 2008
United States742 Posts
May 21 2010 22:59 GMT
#10
On May 22 2010 07:18 Oxygen wrote:
trying to remember some math and I don't know why this isn't working

given

[image loading]


show that

[image loading]



we differentiate G with respect to x

[image loading]


now I would think the previous step is correct, but then when I differentiate Gx (first derivative of G with respect to x) a second time I get a pretty big expression and I can't reduce it all. I think I'm already making a mistake somewhere... if someone could just tell me if the following expression is correct, I can do the rest

[image loading]



thoughts?


Seems to me like it might be some kind of Green's/Stokes' Thm kind of problem. Where when you take y/(x^2 + y^2) with respect to y and you take x/(x^2 + y^2) with respect to x you get the same thing and they cancel. I can't remember what thats called... shit now that's going to bug me.
Oxygen
Profile Blog Joined November 2003
Canada3581 Posts
Last Edited: 2010-05-21 23:09:31
May 21 2010 23:06 GMT
#11
On May 22 2010 07:41 kingjames01 wrote:
Well, I went ahead and worked it out.
If G(x, y) = F(u, v) the way that you have it defined above, then when you go to calculate,
\frac{\partial^{2} G}{\partial x^{2}} + \frac{\partial^{2} G}{\partial y^{2}}
the mixed partials will cancel and then you'll have
\frac{\partial^{2} F}{\partial x^{2}} + \frac{\partial^{2} F}{\partial y^{2}} multiplied by a common multiple that can be factored out... which will result in 0.


That's the part I'm not understanding. Given

[image loading]


[image loading]


right?

so
[image loading]
. specifically, how do you differentiate
[image loading]
? Fu is a function of u and v, which are in turn functions of x and y, so do you have to apply the product rule? in which case, what does
[image loading]
yield?


Dont drink and derive. TSL: Made with Balls.
kingjames01
Profile Blog Joined April 2009
Canada1603 Posts
May 21 2010 23:08 GMT
#12
What you're probably remembering is that for any function is at least twice differentiable and continuous, then the mixed partials will always equal.

So, if f is a C^{2} function, ie. f, fx, fy, fxx, fxy, fyx, fyy, then fxy = fyx.
In general this can be extended to higher orders and is not restricted to C^{2}. You would have seen this in courses in Complex Analysis, Differential Equations, Undergrad Mechanics, Undergrad Calc...

Who would sup with the mighty, must walk the path of daggers.
kingjames01
Profile Blog Joined April 2009
Canada1603 Posts
May 21 2010 23:14 GMT
#13
On May 22 2010 08:06 Oxygen wrote:
Show nested quote +
On May 22 2010 07:41 kingjames01 wrote:
Well, I went ahead and worked it out.
If G(x, y) = F(u, v) the way that you have it defined above, then when you go to calculate,
\frac{\partial^{2} G}{\partial x^{2}} + \frac{\partial^{2} G}{\partial y^{2}}
the mixed partials will cancel and then you'll have
\frac{\partial^{2} F}{\partial x^{2}} + \frac{\partial^{2} F}{\partial y^{2}} multiplied by a common multiple that can be factored out... which will result in 0.


That's the part I'm not understanding. Given

[image loading]


[image loading]


right?

so
[image loading]





Yes, that's right so far.

Continuing,
\frac{\partial^{2} G}{\partial x^{2}} = \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial F}{\partial v} \frac{\partial v}{\partial x}\right)
= \frac{\partial}{\partial u} \left(\frac{\partial F}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial F}{\partial v} \frac{\partial v}{\partial x}\right) \frac{\partial u}{\partial x}
= \left(\frac{\partial^{2} F}{\partial u^{2}} \frac{\partial u}{\partial x} + \frac{\partial^{2} F}{\partial u \partial v} \frac{\partial v}{\partial x}\right) \frac{\partial u}{\partial x}
= \frac{\partial^{2} F}{\partial u^{2}} \left(\frac{\partial u}{\partial x}\right)^{2} + \frac{\partial^{2} F}{\partial u \partial v} \frac{\partial v}{\partial x} \frac{\partial u}{\partial x}

Do the same thing for the second partial of G wrt y and sum them. Evaluate the partial of u wrt x, u wrt y, v wrt x, v wrt y and when you substitute you'll see some very big simplifications.

Finally, if you are going to continue this you should pm me. Homework threads aren't allowed here. I can latex the solution if you are stuck but this should get you going. Good luck!
Who would sup with the mighty, must walk the path of daggers.
Oxygen
Profile Blog Joined November 2003
Canada3581 Posts
Last Edited: 2010-05-21 23:19:59
May 21 2010 23:15 GMT
#14
took the liberty ... http://www.homeschoolmath.net/worksheets/equation_editor.php

[image loading]


[image loading]


[image loading]


[image loading]


seems like I should be fine from here. thanks a lot for your help.

btw homework threads are generally not allowed when posted in general forum; they're fine in blogs, as long it's not "do my work for me". the huge movement against "homework" threads started a few years back when lots of people used to do that.
Dont drink and derive. TSL: Made with Balls.
kingjames01
Profile Blog Joined April 2009
Canada1603 Posts
May 21 2010 23:18 GMT
#15
Nice! I didn't know that you could convert it online! =)
I'm on my Windows side waiting for the beta to come back online, so I was just typing it freehand. haha.
Who would sup with the mighty, must walk the path of daggers.
kingjames01
Profile Blog Joined April 2009
Canada1603 Posts
May 21 2010 23:29 GMT
#16
Not a problem! Glad I could help.
Ah, okay, I didn't know that blogging it would be fine. =)
Yeah, I remember when the crackdowns started happening. Those were still back in my lurker days.
Who would sup with the mighty, must walk the path of daggers.
kingjames01
Profile Blog Joined April 2009
Canada1603 Posts
May 21 2010 23:34 GMT
#17
By the way, I forgot to put in the second term in this line:

\frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial F}{\partial v} \frac{\partial v}{\partial x}\right)
= \frac{\partial}{\partial u} \left(\frac{\partial F}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial F}{\partial v} \frac{\partial v}{\partial x}\right) \frac{\partial u}{\partial x} + \frac{\partial}{\partial v} \left(\frac{\partial F}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial F}{\partial v} \frac{\partial v}{\partial x}\right) \frac{\partial u}{\partial x}

My mistake. If you want to see why, just pretend that expression inside of the bracket is a function called H. Well, it depends on x and y or u and v. So if you want to split the derivative of H wrt x into a partial wrt u then you'll have to do it wrt v as well since x depends on both u and v.
Who would sup with the mighty, must walk the path of daggers.
Nytefish
Profile Blog Joined December 2007
United Kingdom4282 Posts
May 21 2010 23:38 GMT
#18
lol I was so confused and thought I had forgotten how to do the chain rule until that post^
No I'm never serious.
Oxygen
Profile Blog Joined November 2003
Canada3581 Posts
May 21 2010 23:39 GMT
#19
ah that makes way more sense. also I imagine the last partial is dv/dx not du/dx?
Dont drink and derive. TSL: Made with Balls.
kingjames01
Profile Blog Joined April 2009
Canada1603 Posts
Last Edited: 2010-05-21 23:44:08
May 21 2010 23:42 GMT
#20
Yes, you're right, my mistake again, I copied and pasted it. =)
It's hard to read latex code if you're not being careful.

EDIT:
For anyone who is following this discussion, the correct latex code is:

\frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial F}{\partial v} \frac{\partial v}{\partial x}\right)
= \frac{\partial}{\partial u} \left(\frac{\partial F}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial F}{\partial v} \frac{\partial v}{\partial x}\right) \frac{\partial u}{\partial x} + \frac{\partial}{\partial v} \left(\frac{\partial F}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial F}{\partial v} \frac{\partial v}{\partial x}\right) \frac{\partial v}{\partial x}
Who would sup with the mighty, must walk the path of daggers.
Oxygen
Profile Blog Joined November 2003
Canada3581 Posts
May 22 2010 00:09 GMT
#21
so I assume a full solution would be fairly long and messy? I'm still boggling my way through the algebra, trying to use Maple but not having much success
Dont drink and derive. TSL: Made with Balls.
Nytefish
Profile Blog Joined December 2007
United Kingdom4282 Posts
Last Edited: 2010-05-22 00:24:31
May 22 2010 00:23 GMT
#22
It's not that bad as long as you don't substitute stuff in until the very last possible moment. And by the time you are substituting stuff you only need to look at the numerators - make sure all your stuff is over (x^2+y^2)^2.

When cancelling the mixed partials, make sure you take all of them from both d^2G/dx^2 and d^2G/dy^2 and write your expressions like dv/dy=-du/dx
No I'm never serious.
Normal
Please log in or register to reply.
Live Events Refresh
Next event in 57m
[ Submit Event ]
Live Streams
Refresh
StarCraft 2
LamboSC2 502
Fuzer 273
BRAT_OK 68
gerald23 51
MindelVK 18
StarCraft: Brood War
Calm 4125
Shuttle 2582
Horang2 1804
Jaedong 1660
Mini 762
EffOrt 626
Light 452
ZerO 292
hero 257
Rush 201
[ Show more ]
Snow 193
Hyun 125
Sharp 68
Terrorterran 33
sorry 33
ToSsGirL 31
JYJ26
Aegong 25
soO 22
Rock 20
scan(afreeca) 14
Dota 2
Gorgc5547
qojqva3813
singsing2858
Dendi1216
syndereN303
Counter-Strike
oskar101
Other Games
DeMusliM1706
hiko898
FrodaN391
Hui .367
Liquid`VortiX110
QueenE80
KnowMe46
nookyyy 46
Trikslyr16
ZerO(Twitch)15
Organizations
StarCraft: Brood War
Kim Chul Min (afreeca) 9
StarCraft 2
Blizzard YouTube
StarCraft: Brood War
BSLTrovo
sctven
[ Show 16 non-featured ]
StarCraft 2
• poizon28 12
• Reevou 7
• Adnapsc2 4
• AfreecaTV YouTube
• intothetv
• Kozan
• IndyKCrew
• LaughNgamezSOOP
• Migwel
• sooper7s
StarCraft: Brood War
• BSLYoutube
• STPLYoutube
• ZZZeroYoutube
Dota 2
• C_a_k_e 2836
• WagamamaTV446
League of Legends
• TFBlade1020
Upcoming Events
StarCraft2.fi
57m
Replay Cast
7h 57m
The PondCast
17h 57m
OSC
23h 57m
Demi vs Mixu
Nicoract vs TBD
Babymarine vs MindelVK
ForJumy vs TBD
Shameless vs Percival
Replay Cast
1d 7h
Korean StarCraft League
2 days
CranKy Ducklings
2 days
WardiTV 2025
2 days
SC Evo League
2 days
BSL 21
3 days
Sziky vs OyAji
Gypsy vs eOnzErG
[ Show More ]
OSC
3 days
Solar vs Creator
ByuN vs Gerald
Percival vs Babymarine
Moja vs Krystianer
EnDerr vs ForJumy
sebesdes vs Nicoract
Sparkling Tuna Cup
3 days
WardiTV 2025
3 days
OSC
3 days
BSL 21
4 days
Bonyth vs StRyKeR
Tarson vs Dandy
Replay Cast
4 days
Wardi Open
4 days
StarCraft2.fi
4 days
Monday Night Weeklies
5 days
Replay Cast
5 days
WardiTV 2025
5 days
StarCraft2.fi
5 days
PiGosaur Monday
6 days
StarCraft2.fi
6 days
Liquipedia Results

Completed

Proleague 2025-11-30
RSL Revival: Season 3
Light HT

Ongoing

C-Race Season 1
IPSL Winter 2025-26
KCM Race Survival 2025 Season 4
YSL S2
BSL Season 21
CSCL: Masked Kings S3
Slon Tour Season 2
Acropolis #4 - TS3
META Madness #9
SL Budapest Major 2025
ESL Impact League Season 8
BLAST Rivals Fall 2025
IEM Chengdu 2025
PGL Masters Bucharest 2025
Thunderpick World Champ.
CS Asia Championships 2025
ESL Pro League S22
StarSeries Fall 2025
FISSURE Playground #2

Upcoming

BSL 21 Non-Korean Championship
Acropolis #4
IPSL Spring 2026
Bellum Gens Elite Stara Zagora 2026
HSC XXVIII
RSL Offline Finals
WardiTV 2025
Kuram Kup
PGL Cluj-Napoca 2026
IEM Kraków 2026
BLAST Bounty Winter 2026
BLAST Bounty Winter Qual
eXTREMESLAND 2025
TLPD

1. ByuN
2. TY
3. Dark
4. Solar
5. Stats
6. Nerchio
7. sOs
8. soO
9. INnoVation
10. Elazer
1. Rain
2. Flash
3. EffOrt
4. Last
5. Bisu
6. Soulkey
7. Mini
8. Sharp
Sidebar Settings...

Advertising | Privacy Policy | Terms Of Use | Contact Us

Original banner artwork: Jim Warren
The contents of this webpage are copyright © 2025 TLnet. All Rights Reserved.