
Computer Vision With Scribbler Robots

Jillian Pyle And Clark Rinker
The Evergreen State College

June 3, 2010

1 Introduction

For the last five months we have been working on our project involving the
scribbler robots. The goal was to program the scribblers to find each other
and interact in a semi inelegant way. One reason behind picking this project
was to learn about an aspect of computer science that we would not touch
on in our studies in Student Originated Software. The project started with
research in the fields of robotic behavior, including swarm robotics and basic
interactions with each other. Then we moved onto computer vision, a topic
that would take up most of our time. Lastly was mapping and navigation in
a hope for the robots to inelegantly search for each other rather than blindly
wandering around until they by random chance found each other. Swarm
Robotics is a robotics paradigm where robots react to each other in order to
accomplish a goal. Intelligence emerges from the swarm rather than from the
individual robots. Using the Scribblers for swarm robotics however produces
a few issues. Firstly, with only two robots it would be difficult to produce
said swarm intelligence. While the scribbler robots are able to detect their
environment, being equipped with a variety of sensors their ability to interact
with their environment is somewhat limited, really only being able to drive
around and beep. In particular, using the scribblers the project addressed
two points of Artificial Intelligence:

1) Using the attached camera, is it possible for the Scribblers to ”see”
each other? 2) Using the radio and various sensors could the robots find each
other within a room?

1



Scribbler Specification The Scribbler robots are battery operated cars
created by Prallax Inc. The Scribblers come equipped with the following
sensors: o Two binary IR sensors designed to follow a black line drawn on
the ground o Two front mounted binary IR sensors for collision detection o
A stall sensor that can detect if the robot is moving o Three front mounted
continuous light detection sensors o A two-frequency tone generator o No
odometer o Scribbler can hold a pen in center of robot (Thus ”The Scribbler”)

In addition the Institute For Personal Robots In Education (IPRE) that
created the Myro interface adds the following functionality with their Fluke,
an add on circuit board: o The capability to program the scribbler with the
IPRE firmware wirelessly using a Bluetooth Radio. o Extra LEDs (front and
back) for communication o Three infrared obstacle detectors o A battery
voltage sensor o A 220x220 pixel color camera

Myro Specification The Myro interface is a framework for programming
robots equipped with Flukes written in Python and developed by the IPRE.
Myro communicates via Bluetooth with the Fluke using the Fluke Micro-
controller’s byte-code and is able to interface with the Scribbler to make use
of its drive control and sensors. Functions include: o Duel and independent
control of the drive motors o Readings from the various collision and light
sensors o Producing pitches from the two tone speaker (including an interface
for producing a string of notes from their associated letter pitches) o Color
and Black and white photos.

A robot is initialized by first pairing the robot with the computer’s blue-
tooth controller. The serial port associated with the particular piconet (see
below for brief bluetooth specification,) is then sent to the myro’s init func-
tion. The Python interpreter is then able to run the commands in the inter-
preter shell or take prepared Python scripts to execute a series of commands.
Because the Myro framework uses global variables to store data about the
scribbler multiple robots cannot be controlled within the same Python inter-
preter process. Thus controlling multiple Robots from the same computer
becomes a inter-process communication problem, something briefly touched
on by the scope of this project.

Bluetooth Specification In order to give some scope of the scalability of
this project’s work with the Scribbler robots a brief overview is given for the
Bluetooth Radio Protocol. Bluetooth makes use of a portion of the Industrial,

2



Scientific, and Medical (ISM) 2.4GHz radio band and can transmit across 79
radio frequencies from 2402-2480 MHz. A master bluetooth controller can
control up to seven slave devices in what’s called a piconet and can use its
79 channels to transmit at speeds up to 1 Mbit/s. Thus this project could
be scaled to seven scribblers pair to one computer running seven instances of
Python running the Myro interface. Furthermore, multiple piconets can exist
in the same area (thus why your phone doesn’t receive data from someone
else’s cell phone) in time-sliced mode called a Scatter net. With the relatively
low bandwidth needs of the Scribbler byte-code multiple piconets of robots
could be run in the same area.

2 Related Work

Computer Vision Computer Vision encompasses the use of computer
imaging to infer data including object recognition, event recognition, and
modeling more. This project focuses on object recognition, using the Scrib-
bler’s camera to first search for specific colors and then identifying key points
and attempting to infer if an image is a match. Because images are made up
of an array of pixels some simpler image analysis could look for particular
colors or combinations of colors to test if an image matches the desired search
criteria. In the insistence of the Scribbler there happens to be a large green
circuit board sticking out of the top of the robot, and thus an algorithm could
be written that test if there were green pixels in the image. This however
produces a few problems. 1) While most things aren’t bright green (thus
the idea behind Green Screens) different light levels will produce different
pixel values and thus writing such an algorithm would be heavily based on
empirical data gathered about the environment the robot is run in. Our en-
vironment, The Evergreen State College, also happens to be in a forest. 2)
Sending a 220x220 color picture across Bluetooth and then looping through
all of the pixels is time consuming. 3) And probably most importantly any
image not taken of the front of the Scribbler wouldn’t have any green in it.

Therefore simply looking for green is not general enough for the project’s
application.

Rather than looking for colors an algorithm that attempted to do object
mapping could be used (looking for the shape of the circuit board, wheels,
etc) Simple object recognition for exact matches of photos would also be easy,
just match up point by point on the dot. However, looking for exact images

3



does not allow for partial occlusion or even the smallest amount of rotation
and scaling, making it nearly useless in a practical environment. Rotation,
scaling and occlusion can be accounted for by using Geometric Hashing and
Linear Translation.

Geometric Hashing And SIFT The expensive problem of comparing
two images can be somewhat mitigated by making use of Geometric Hashing.
Rather then attempt to do object mapping by checking for exact images the
image can be split into a grid of buckets. Key points in the picture are then
hashed into these buckets on their x an y coordinates within the picture.
Instead of storing and comparing entire pictures storage and comparisons are
only made using full buckets, resulting in much quicker object recognition.
Geometric hashing also allows for some degree of scaling and rotation, as
objects that are closer or further from the image source within a threshold
are likely to hash to the same bucket. One way these key points can be
selected is using the SIFT algorithm that was published by David Lowe.
The SIFT algorithm first identifies key points in an image and turns them
into feature vectors. These vectors can then be stored and used in the linear
transformation by using the vectors and transforming the other points in the
image to match this vector. Once the points are transformed they can then
be then run through the geometric hashing function in order to determine if
the object is in the image.

Navigation Within the scope of the project navigation encompasses both
obstacle navigation, the Scribbler being able to avoid objects and continue
towards its destination and mapping, the Scribbler being able to plot a path
between it’s start and end location. Collision avoidance is handled using
the Scibbler’s onboard IR sensors. A call one of Myro’s IR sensor functions
returns an integer value specifying a distance, with 0 signifying no reflection
detected (no object detected) and 6400 being a collision. For instance, a
Scribbler that wanted to avoid running into anything could turn left every
time it got too close to an object:

while(true): #Run Until the Robot is switched off

while(getObstacle("middle",0)<4000):#Read from the middle sensor

forward(5,2)#go forward for two seconds

turnLeft(.5,2)#Turn left for two seconds.

4



Mapping of an area can be done by creating a Roadmap. A Roadmap a graph
whose vertices represent key points in an area and whose edges represent
a distance and direction to the next vertex. In the case of the Scribbler,
a graph containing a roadmap could be traversed to determine the path
between two points in an area. This poses an interesting challenge for the
Scribbler in a few areas: 1)The Scribbler has no compass, and therefore
would have difficulty discovering what direction it was heading in. 2)The
Scribbler cannot measure its speed; it can only measure how much power
is going to the motors. Furthermore speed is affected by the battery life
of Scribbler. The lack of these features on the Scribbler means that these
features would need to be improvised from the Scribbler’s IO devices, either
through the use of the sensors or by marking up the area beforehand and
relaying on image recognition. This project proposes solutions based on using
the various sensors on the Scribbler.

3 Implementation

Object Recognition Testing for key points rather than colors allows for
use of the grayscale mode of the camera and tests a much smaller subset
of pixels, removing the two bottlenecks from the color recognition imple-
mentation. Eight images in total were used as the base case for the object
recognition, taken at 45 degree angles of the Scribbler. Key points were then
chosen using an interface mocked up that allowed the user to click on sections
of the image and return pixels at those coordinate. The program was used
to collect 15 key points, hashed into a 10x10 array representing the Geomet-
ric Hash buckets. Choosing the points allows for ease of testing: the same
image can be fed to the algorithm to test for a match. In the case of this
hashing function, collisions are good. The key points from a test image are
hashed along the same function, and a collision results in a potential match.
A collision results in a ”vote” in favor of a match, with enough votes point-
ing towards a positive image match. Use of geometric hashing results in the
case of this implementation 15 comparisons per base image; very inexpensive
compared to comparing bitmaps. Images being tested in real-time however
cannot make use of the interface user picking key points. Test images there-
fore have their key points chosen by SIFT and are then hashed against the
base images.

5



Using Geometric Hashing With a working geometric hashing function
we can use our stock images to have one scribbler attempt to identify the
other. Because the camera can only take relatively low resolution photos (220
X 220 pixels) there will be a certain range that one scribbler will be able to
”see” the other scribbler in. Through testing we can derive a distance that
we can reasonably assume the geometric hashing function will be able to
identify a scribbler. With this distance D we can define an area that, if both
scribblers are inside, we will get a successful match. Our search pattern for
this area is defined as follows:

1) Robots decide which one will search by generating a random number.
(highest number searches) 2) The robot doing the searching will execute the
following code:

found=false

timeout=false;#Robot will make one full rotation before timing out.

while(!timeout):

photo=takePhoto()

found=checkPhoto(photo)

if(found==true):

return true

else:

rotate()#scribbler will rotate half of a photo frame

checkTimeout()

return found

The scribbler will thus take a photo, check to see if it matches, and then if
no match is found rotate half the width of its photo frame. If the scribbler
makes one full rotation without finding the other robot it will time out and
return a false, and go to another point in the room to check for other robot
again.

Color Recognition The Myro interface provides its own set of functions
for image processing that we used to attempt color recognition as an alter-
native to geometric hashing. Due to the fact that the room we were running
the scribblers in was mostly the same color blue as the body of the robots, we
decided to look for the green in the fluke board. This turned out to be much
easier to understand, program, and implement then the geometric hashing.
The algorithm that we use searches through all the pixels searching for a

6



specified range of color. It breaks the image into nine sections, and searches
through those sections for specific colors. The reason behind the nine sec-
tions is if the color is identified in say the top right hand corner, we want
the robot to turn a little to the right and then move forward. If the color
was found in the middle, we want the robot to go strait. The search will go
from the center out to the sides with each section being 74x74 pixels. If none
of the specified color in the image is found, the scribbler will do a default
search pattern (move forward until it gets close to an object, then randomly
turn right or left), periodically taking pictures to search for the color again.

While the color recognition method had some success in identifying the
target Scribbler it runs into a few pitfalls that make it a suboptimal solution
to the image recognition problem: 1) The transmission and analysis of the
color image is expensive. A 220x220 bitmap works out to be 57,600 pixels or
1.3MB in 24bit color. This translates to a bottleneck at the Bluetooth radio,
which rarely seems to operate at its advertised 1Mbit/s. 2) For the algorithm
to identify the target Scribbler it must be taken head on for enough of the
circuit board to be in view. Two Scribblers already driving towards each
other doesn’t provide a very interesting computer vision problem. 3) The
image capturing functions requires the robot to not accept commons while
it sends the photo back to the computer. This slow reaction time translated
into the robot running into things before it was able to make a decision
based on the image test. 4) While the computer center mostly blue tones,
any introduction of Evergreen State College memorabilia into the experiment
produced false positives.

Implementing Navigation Navigation can be implemented using a Roadmap
whose vertices represent circles whose radius is the distance that the Geo-
metric hashing algorithm can identify a target Scribbler and whose edges
represent a distance an direction to adjacent vertices. Two Scribblers look-
ing to find each other in a room would begin by reporting their starting
vertices and complete a graph traversal between their starting points. In or-
der to prevent the Scribblers from missing each other it would be necessary
for both to use the same traversal. Each Scribbler will then use local naviga-
tion to travel between vertices. Once the Scribblers arrive at the same vertex
they can then perform a search using the Geometric Hashing Algorithm. In
order to traverse two vertices the Scribblers would need to know their direc-
tion and their speed. However as the robots come equipped neither with a

7



odometer nor a compass these values need to be improvised using some of
the other sensors on the Scribbler.

Speed on the Scribbler is controlled by sending a value from 1-5 to the
movement functions which translate to an amount of power generated by the
drive motors. However actual speed of the robot depends on the amount of
battery life and the surface the robot is traversing. Using the voltage test
function and timing the robots it would be possible to generate some average
speeds for different battery charge levels. However these would be inaccurate
if the robot was moved to a new terrain or after enough hair from the carpet
gets wrapped around the drivetrain of the robot, making it pretty unreliable
data.

Speed could be instead estimated by calculating a change in magnitude
of the IR sensors on the front of the Scribbler. Assuming there are no moving
objects in the area or readings that produce large jumps in magnitude are
thrown out it would be possible to produce an average speed over a given
interval. However the Scribbler would be unable to estimate its speed if
crossing an expansive (in robot terms) area as the IR sensor would not return
a value.

Using the Bluetooth radio’s signal strength reading it is possible to pro-
duce a distance from the computer to the Scribbler Robot. The Bluetooth
protocol allows a device to be paired with masters on different piconets using
time slicing. By pairing a Scribbler with two computers there is enough infor-
mation to produce a speed and a direction: Using the two signal strengths as
radiuses two circles can be drawn whose intersects represent the two possible
locations for the Scribbler. By placing the two computers against the edge
of the test area one point can be discarded as it will always appear outside
of the boundary. By Measuring the distance between the two computers
and using the two signal strengths we can draw a triangle and calculate the
angles between the three vertices. Two signal strength measurements over
a time interval allows the calculation of a speed and a direction

While triangulation would actually yield enough information to show the
locations of the Scribblers for the purpose of road mapping it will produce a
speed and a direction for the robot to reach its next vertex. Within the scope
of the project triangulation using the Bluetooth controller somewhat violates
its intent as the goal was to simulate swarm robotics when computing their
decisions on the computer and the distance between the two computers uses
data that the Scribbler can’t actually measure.

8



4 Results

Our work produced successful implementations of navigation of local obsta-
cles, Color Recognition, and the geometric hashing function using the key
point selection interface. Our color recognition implementation produced
successful matches of the target Scribbler (as well as a few other green col-
ored items) within a limited range taking pictures head on. Our geomet-
ric hashing function could compare two images without implementing linear
transformation to compensate with large rotations and occlusion. We were
unable to interface our code with the SIFT algorithm and thus key points
for the geometric hashing function had to be selected manually. In addition
we were unable to implement a Roadmap navigation algorithm.

5 Conclusions

In conclusion, we were not able to complete all aspects of our project that we
had hoped due to time constraints and difficulties that we had not expected
to encounter. If we could start the project over from the beginning, one hope
would be to spend more time on the robot behavior rather than the computer
vision part. Were we to continue with our project, the behavior aspect will be
our next goal. We were able to learn much about the challenges and puzzles
that are involved with robotics. Doing something that was mostly unrelated
to our class subjects allowed us to explore different areas of computer science
and give us a better understand of what is out there. We were able to learn
the importance of having a clear and laid out plan when implementing a
project and the team work and communication that is required when working
with others.

6 References

Citations

1)Institute For Personal Robots In Education. "Myro Hardware." IPRE. March

6th 2009. Web. http://wiki.roboteducation.org/Myro_Hardware Accessed June

1st, 2010.

2)Institute For Personal Robots In Education. "Myro Reference Manual."

IPRE. March 30th 2010. Web. http://wiki.roboteducation.org/Myro_Reference_Manual Accessed June 1st, 2010.

9



3)Wikipedia Users. "Bluetooth." Mediawiki Foundation. June 2nd,

2010.http://en.wikipedia.org/wiki/Bluetooth Accessed June 2nd 2010.

Bibliography

Wolfson J. Haim, Rigoutsos Isidore. Geometric Hashing: An Overview IEEE Computational Science & Engineering pg 10- 21. 1997

Lowe G. David. Object Recognition from Local Scale-Invariant Features.

Proc. Of the Internationa Conference on Computer Vision, Corfu

(Sept. 1999)

10


