
1 Filters

It quickly becomes apparent that sequences are not adequet in a general topo-
logical setting and that new more general concepts need to be introduced. Two
such generalisation are common: nets and filters. Filters are one of the fun-
damental objects in a Convergence Space. However, their use it not limited to
Convergence Spaces and they are interesting in their own right in a Topolog-
ical setting. In this section we introduce the concept of a filter and illustrate
some applications to Point-Set Topology working towards elegant proof of Ty-
chonoff’s Theorem. Throughout this section all our spaces will be Topological,
any further structure will be clearly indicated. With that said, the definitions
in ”Basic Concepts” extend through to more general spaces.

1.1 Basic Concepts

Definition 1.1. A nonvoid family F of subsets F of a set X is called a filter
in X if it satisfies the following axioms:

(F. 1) If F ∈ F then F is not void

(F. 2) If F1 ∈ F and F1 ⊆ F2 then F2 ∈ F

(F. 3) If F1, F2 ∈ F and F1 ∩ F2 ∈ F

It is useful to sumarise the properties of a filter as follows: a filter is a nonvoid
family of nonvoid subsets of X which have the finite intersection property and
are closed under supersets.

Remark 1.2. The Axiom (F. 3) can be weakened as follows:

(F. 3a) If F1, F2 ∈ F then there exists an F ∈ F such that F ⊆ F1 ∩ F2

Clearly (F. 2) and (F. 3a) imply (F. 3). However there is no advantage for us
to take (F. 3a) as one of our Axioms, so we retain (F. 1-3) as our Axioms.

Remark 1.3. When visualising Filters it is often useful to consider an equiva-
lent form of (F. 2):

(F. 2a) If F1 ∈ F and F2 is a subset of X, then F1 ∪ F2 ∈ F

While not practical, it does shed more light on the nature of filters. One
consequence of (F. 2a) is that if we are given a sufficient number of elements
from the filter, we are able to generate the rest of the filter by taking supersets.
Together with (F. 3a), this useful characterisation of a filter is captured in the
following definition:

Definition 1.4. A nonvoid family B of subsets B of X is called a filter base
in X if it satisfies the following axioms:

(B. 1) If B ∈ B then B is nonvoid
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(B. 2) If B1, B2 ∈ B then there exists a B ∈ B such that B ⊆ B1 ∩B2

The filter F generated by the filter base B is the family of those sets F ⊆ X
which contain some B ∈ B

Remark 1.5. Every filter F is also a filter base and the filter is generates is F

Usually we define filters by defining what sets are in their filter base. As we
will soon see, it is often far easier to work with filter bases than filters themselves
and they also give greater insight to the ”inner-workings” of the filter in question.
It is also possible to define a filter subbase but for our purposes they will not
be needed.

Definition 1.6. We say a filter is countable if it admits a countable base

To complete the generalisation of sequences to filters we make the following
definition:

Definition 1.7. Let (xn)∞n=1 be a sequence in the set X and let F be the filter
generated by the denumerable base B = {Bn} where Bn = {xv : v ≥ n}. Then
F is called the elementary filter generated by the sequence (xn).

Remark 1.8. The elementary filter for a sequence (xn) is the set of all subsets
F of X which contain all but a finitely many elemets of the sequence (xn)

We will later show that the elementary filter captures the same information
as the sequence used to generate it.
We can create a partial ordering on the set of all filters in the following way:

Definition 1.9. We say a filter F is finer than a filter G if for every G ∈ G
there is an F ∈ F such that F ⊆ G. In symbols we say F ≥ G or G ≤ F . We
also sometimes say that G is coarser than F if F is finer than G.

Definition 1.10. We say a filter F is strictly finer than a filter G if for every
G ∈ G there is an F ∈ F such that F ⊂ G. In symbols we say F > G or G < F .
We also sometimes say that G is strictly coarser than F if F is strictly finer
than G.

Lemma 1.11. The relation ≥ defines a partial order on the set of all filters.

Proof. Reflexivity is clear. To show antisymmetry suppose F ≥ G and G ≥ F
and let F ∈ F . Then ∃ G ∈ G such that G ⊆ F so by (F. 2) F ∈ G. Similarly,
if G ∈ G then ∃ F ∈ F such that F ⊆ G so G ∈ F . Thus F = G and ≥ is
antisymmetric. To show transivity suppose F ≥ G and G ≥ H. Then for every
H ∈ H ∃ G ∈ G such that G ⊆ H and ∃ F ∈ F such that F ⊆ G so F ⊆ G ⊆ H
so F ⊆ H and F ≥ H. Hence, ≥ is transitive and thus a partial ordering on the
set of all filters.

Definition 1.12. An ultrafilter U in a set X is a filter such that there exists
no filter in X which is strictly finer than U.
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Remark 1.13. This definition is equivalent to saying that U is maximal with
respect to the partial ordering ≥

Theorem 1.14. Given any filter F in a set X there is an ultrafilter U in X
which is finer than F

Proof. We invoke Zorn’s Lemma: Let M be the set of all filters G finer than
F . Now M 6= ∅ since F ∈M. Then ≥ is a partial order on M. Every linearly
ordered subfamily L of M has an upper bound in M, namely, ∪{G : G ∈ L} is
a filter in X which is finer than every G ∈ L. Hence Zorn’s Lemma applies and
so there is a maximal element U ∈M. No other filter G is finer than U since if
U ≤ G then F ≤ G and so G ∈M and hence G = U.

Theorem 1.15. If A1 ∪ · · · ∪An ∈ U, then Ai ∈ U for some i.

Proof. It suffices to treat the case n = 2. Suppose A1 6∈ U but A1 ∪A2 ∈ U and
consider the family G of those sets G which have the property that A1 ∪G ∈ U.
Since A2 ∈ G, G 6= ∅ and none of it’s elements are void because A1 6∈ U. This
proves that G saistfies (F. 1). (F. 2-3) are easily to verify so G is a filter in
X. By (F. 2) we have that U ≤ G but since U is an ultrafilter G ≤ U and so
A2 ∈ G ⇒ A2 ∈ U.

Corollary 1.16. Let F be a filter on X. Then A ∈ F or X\A ∈ F , ∀A ⊆ X
if and only if F is an ultrafilter.

Proof. (⇒) Let F be a filter with the given property and let F ≤ G for some
fitler G in X. If G ∈ G, then G ∈ F or X\G ∈ F . But X\G ∈ F would imply
that G ∩X\G = ∅ ∈ G. Thus, G ∈ F and so G ≤ F and hence F = G and F
is maximal i.e. an ultrafilter.
(⇐) Follows from Theorem 1.15

Ultrafilters are very useful tools in point-set topology so long as we are willing
to accept the Axiom of Choice. We will investigate ultrafilters in greater detail
in later sections as any further investigation would detract from the expository
nature of this section. We conclude this section with two important types of
filters.

Definition 1.17. If A ⊂ X then the family (A)• = {B ⊆ X : A ⊆ B} is a filter
called the principle filter of A. The set {A} is a base of the principle filter of
A.

Simply put, the principle filter of A is the family of subsets of X which
contain A. We will make great use of the principle ultrafilter at a point x
denoted (x)• or more commonly, ẋ which is the set of all subsets of X which
contain x.

Definition 1.18. If a filter F on a set X satisfies
⋂

F∈F F = ∅ then we say
that F is a free filter.
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1.2 Convergence in Topological Spaces

We begin exploring the applications of filters to point-set topology. Some of
the concepts presented here are not general enough for a convergence space and
hence some of these concepts will be redefined later for the more general setting.
Obviously, the generalisations and the definitions presented here will agree in a
topological setting. This section will introduce the adherence and limits points
of a filter and present some applications.

Definition 1.19. The neighbourhood filter at a point x, denoted N (x) is
the filter generated by family of open sets containing x.

Definition 1.20. The adherence of a filter F in a topological space X is the
closed set

adh F = ∩{F : F ∈ F}

Where F denotes the topological closure of F. The elements of adh F are called
the adherence points of the filter F .

Remark 1.21. The adherence of F can be a void set. Define a family of subsets
of N as follows: F = {F ⊆ N : card(N\F ) <∞}

Claim 1.21.1. F is a filter

Proof. Since N ∈ F , F is nonvoid, so we verify the axioms (F. 1-3)

(F. 1) If ∅ ∈ F then card(N\∅) < ∞. But N\∅ = N which has infinite cardi-
nality. Thus ∅ /∈ F

(F. 2) Let F1 ∈ F and F1 ⊆ F2. Then card(N\F2) ≤ card(N\F1) < ∞ ⇒ F2 ∈
F . Hence F is closed under supersets.

(F. 3) Let F1, F2 ∈ F . N\(F1 ∩ F2) = N\F1 ∪ N\F2 and card(N\F1 ∪ N\F2) ≤
card(N\F1) + card(N\F2) < ∞. So F1 ∩ F2 ∈ F and hence F is closed
under finite intersections

Claim 1.21.2. F has void adherence

Proof. Suppose x ∈ adh F then x ∈ F ∀F ∈ F and in particular x ∈ N. The
set N\[1, x+ 1] does not contain x and is an element of F and thus x cannot be
an adherence point of F . Thus F has void adherence.

It is worth noting that by our definition, every filter with void adherence is a
free filter but not very free filter has void adherence. This contrasts with some
authors who define a free filter as a filter with void adherence. However, the
difference will be of importance when we are working with convergence spaces.

Lemma 1.22. x is an adherence point of F if and only if F ∩Nx 6= ∅ for every
set F ∈ F and for every neighbourhood Nx of x.
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Proof. This follows from the fact that x ∈ F ⇔ F ∩ Nx 6= ∅ for every neigh-
bourhood Nx of x.

Lemma 1.23. If B is a base for the filter F then adh F =
⋂
{B : B ∈ B}

Proof. Let B be a base for F . Then B ∈ B ⇒ B ∈ F so
⋂
F ⊆

⋂
B and since

every F contains some B we also see that
⋂
B ⊆

⋂
F hence adh F =

⋂
{B :

B ∈ B}

Remark 1.24. In light of the previous Lemma, it makes sense to talk about
the adherence of a filter base defined in the obvious way. It is often easier to
work with filter bases rather than filters when finding calculating adherences.
As a demonstration we calculate the adherence of the elementary filter

Example 1.25. Let (xn) be a sequence in X and let F be the elementary filter
for (xn). By definition, x ∈ adh F ⇔ every neighbourhood Nx intersects every
Bn = {xv : v ≥ n}, that is if and only if every Nx contains xv with v ≥ n where n
is arbitrary. Hence adh F consists of those points x ∈ X whose neighbourhoods
Nx contain an infinity of terms of (xn). This is precisely the definition of an
accumlation point of a sequence, hence the adherence of an elemntary filter is
the set of accumlation points of the corresponding sequence.

Definition 1.26. Let F be a filter in a topological space X. A point x ∈ X is
called a limit point of F if every neighbourhood Nx of x contains some F ∈ F .
The set of all limit points is called the limit of the filter F and is denoted limF

Remark 1.27. This definition is equivalent to saying x ∈ limF ⇔ F ≥ N (x).

Remark 1.28. We will often use the notation F −→ x read ”the filter F
converges to x” instead of x ∈ limF as this notation is far more convienient
when working with convergence structures.

Remark 1.29. It is clear that limF ⊆ adh F

We can extend the definition of a limit point in the natural way to filter
bases as follows:

Definition 1.30. Let B be a filter base in a topological space X. A point x ∈ X
is called a limit point of B if for every N ∈ N (x) there is a B ∈ B such that
B ⊆ N .

Lemma 1.31. The limit of a filter base B is identical with the limit of the filter
generated by B

Proof. Since every B ∈ B is also an element of F , it follows that limB ⊆ limF .
Conversely, since every F ∈ F contains some B ∈ B it follows that limF ⊆ limB
and thus the limits are equal.

Remark 1.32. As before, calculating limits using filter bases is often much
easier than using filters. We illustrate this by calculating the limit of the ele-
mentary filter. In doing so we see that the elementary filter captures the same
information as the sequence does and hence is an appropriate generalisation.
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Example 1.33. Let (xn) be a sequence in X and F the corresponding elemen-
tary filter and B a filter base for the filter F . By definition, x ∈ limB ⇔ for
every N ∈ N (x) there is a B ∈ B such that B ⊆ N . So each N contains some
Bn = {xv : v ≥ n} so every neighbourhood contains some n-tail of the sequence
(xn) which is precisely the definition of a limit point of a sequence.

One of the key failings of sequences in general topological spaces is that the
following lemma on sequences of real numbers cannot be extended to arbitrary
topological spaces:

Lemma 1.34. A point x is an adherence point of a sequence (xn) of real num-
bers if and only if there is a subsequence of (xn) which is convergent to x.

However, we can extend the key features of this Lemma to filters on arbitrary
topological spaces:

Lemma 1.35. A point x is an adherence point of a filter F in X if and only if
there is a filter X which is finer than F and is converging to x

Proof. Let x be an adherence point of a filter F . Then Nx ∩ F 6= ∅ for every
neighbourhood Nx and for every F ∈ F . Hence the family {Nx ∩ F : Nx ∈
N (x) and F ∈ F} is a filter in X. This filter is finer than F and also of N (x)
and it is convergent to x. This proves necessity. Next suppose that there is
a filter G finer than F such that x ∈ limG. Then F ≤ G and N (x) ≤ G so
F ∩Nx ∈ G for any F ∈ F and Nx ∈ N . Thus F ∩Nx 6= ∅ for any F ∈ F and
Nx ∈ N (x) and so x ∈ F . Since F is arbitrary we obtain that x ∈ adh F . This
concludes the proof.

Remark 1.36. In this light, we can see how the notion of a subsequence is
generalised to the notion of a filter G being finer than a filter F .

Theorem 1.37. If U is an ultrafilter in a topological space X, then adh U =
limU

Proof. If x ∈ adh U then there is a filter finer than U convergent to x, but x is
an ultrafilter so such a filter must be U itself and the result follows.

Recall that a space is Hausdorff or T2 if for all x, y ∈ X with x 6= y there
exists open neighbourhoods Ox of x and Oy of y such that Ox ∩ Oy = ∅. We
now demonstrate that this definition is equivalent to filters having at most one
limit point in X.

Theorem 1.38. A topological space X is Hausdorff if and only if every filter
in X has at most one limit point

Proof. Suppose X is Hausdorff. Then let x and y be distinct points in X
and let Ox and Oy be the disjoint open neighbourhoods guarenteed by by the
Hausdorff property of x and y respectively. If x ∈ limF then there is an F ∈ F
such that F ⊆ Ox. Therefore F ⊆ X\Oy and F ⊆ X\Oy. This shows that
y /∈

⋂
F = adh F . By limF ⊆ adh F we have that limF = adh F = {x}. This
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shows that F has a unique limit.
Suppose now that filters have at most one limit point and suppose that X is not
Hausdorf. Then there are distinct points x and y in X such that Nx ∩Ny 6= ∅
for every Nx ∈ N(x) and Ny ∈ N(y). Then F = {Nx ∩ Ny} is a filter in X.
Clearly F ≥ N (x) and F ≥ N (y) so limF = {x, y}, a contradiction.

We can also use filters to characterise T3 spaces as well. Recall that a T3
space is a space with the property that given any closed set A and any point
b /∈ A there exists disjoint open sets OA and Ob such that A ⊆ OA and b ∈ Ob.
Firstly we need to introduce the closure of a filter:

Definition 1.39. The filter generated by the base {F : F ∈ F} is called the
closure of the filter F and is denoted F

Corollary 1.40. limF ⊂ limF

Proof. This follows since F ≥ F

Theorem 1.41. Let X be a topological space, then the following statements are
equivalent

1. X is a T3 space.

2. limF = limF for every filter F in X

Proof. (1) ⇒ (2) Let X be a T3 space and let x ∈ X. Then given Ox there is
an open set Qx having the property that x ∈ Qx ⊆ Qx ⊆ Ox. If x ∈ limF then
there is an F ∈ F such that F ⊆ Qx and so F ⊆ Qx ⊆ Ox. Therefore every
open neighbourhood Ox contains a set F ∈ F and so x ∈ limF .
(2) ⇒ (1) Now suppose that X is not a T3 space but limF = limF for every
filter F in X. Then there is a point x and an open set Ox containing x with the
following property: If Qx is an open set containing x, then Qx is not contained
in Ox. The family of subsets {QxQx ∈ N (x)} is a base for N (x) and no element
of this base is contained in Ox. Thus x /∈ limN (x) but clearly x ∈ limN (x), a
contradiction.

1.3 Application of Filters to the Riemann Integral

It is possible to rework the defintion and construction of the Riemann Integral
using filters. This avoids some of the awkward definitions that are traditionally
set up in order to define the integral. This section will introduce the Riemann
Integral under this new framework, prove equivalence with the traditional frame-
work and some use this characterisation to prove some basic theorems. As usual,
we begin with a definition:

Definition 1.42. A partition of an interval I = [a, b] is a finite sequence of
points (xn) such that

a = x0 < x1 < · · · < xn = b
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A refinement of a partition P is another partition Q of the same interval which
contains all the points of P and possibly some additional points. In this case Q
is said to be finer than P .

Definition 1.43. We define the upper sum of a function f on I with respect
to a partition P as

U(f, P ) =

n∑
i=1

Mi∆xi

Where Mi = sup f(x) such that xi−1 ≤ x ≤ xi and ∆xi = |xi − xi−1|. We
define the lower sum L(f, P ) similarly. If the supremum (resp. infimum) of f
is undefined on an interval, we say that the upper sum (resp. lower sum) is ∞
(resp. −∞).

Lemma 1.44. For any bounded real valued functions f and g on an interval
[a, b] the following hold:

(I.) U(f + g, P ) ≤ U(f, P ) + U(g, P )

(II.) L(f + g, P ) ≥ L(f, P ) + L(g, P )

(III.) −U(f, P ) = L(−f, P )

(IV.) −L(f, P ) = U(−f, P )

Proof. We only prove (I.) and (III.), as (II.) and (IV.) are very similar.

(I.) U(f + g, P ) =
∑n

i=1Mi∆xi where Mi = sup(f + g)(x), x ∈ [xi−1, xi]. Then
Mi ≤ sup f(x) + sup g(x) = Mf,i + Mg,i and it follows that

∑n
i=1Mi∆xi ≤∑n

i=1(Mf,i +Mg,i)∆xi =
∑n

i=1Mf,i∆xi +
∑n

i=1Mg,i∆xi = U(f, P ) +U(g, P ).

(III.) −U(f, P ) = −
∑n

i=1Mi∆xi =
∑n

i=1−Mi∆xi and −Mi = − sup f(x) =
inf −f(x) and the result follows.

Lemma 1.45. Let f : [a, b]→ R be a bounded function. Let B(f,P ) = {[L(f, P ), U(f, P )]}
and let Bf = {B(f,P ) : P is a partition of I} Then Bf is a filter base.

Proof. Since the partition {a, b} is always valid and the upper and lower sums
are always defined it is clear that B 6= ∅. We verify axioms (B. 1-2).

(B. 1) If B ∈ B then B = {[L(f, P ), U(f, P )]} for some partition P . This is
nonvoid for all paritions since the upper and lower sums are always defined,
thus B 6= ∅.

(B. 2) Let B(f,P ), B(f,Q) ∈ B then there is a common refinement of the paritions
P and Q (i.e. taking all the points of P and Q and reordering them to
form a new parition) say R. Then the set B(f,R) ⊆ B(f,P ) ∩ B(f,Q) and
since R is a partition, B(f,R) ∈ Bf .
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Definition 1.46. We say a bounded function f : [a, b] → R is Riemann
Integrable if the filter generated by Bf is convergent. Moreover, the value
of the limit is called the definite integral of f from a to b and is denoted

limBf =
∫ b

a
f .

Theorem 1.47. Suppse f and g are Riemann Integrable functions, then:

(I.) f + g is Riemann Integrable

(II.) −f is Riemann Integrable

(III.) fg is Riemann Integrable

(IV.) If g(x) 6= 0 ∀x ∈ I then f/g is Riemann Integrable

Proof. (I.) Using Lemma 1.44 we see that for any partition P , Bf+g,P ⊂
[L(f, P ) +L(g, P ), U(f, P ) +U(g, P )] = B(f,P ) +B(g,P ) where addition is
taken as the usual pointwise addition of sets. Let x = limBf + limBg =
xf + xg and we claim Bf+g converges to x. We know that Bf ≥ N (xf )
and Bg ≥ N (xg) so Bf+g ≥ Bf + Bg ≥ N (xf ) + N (xg) = N (x) and so
Bf+g converges to x.

(II.) Applying Lemma 1.44 yields that B−f converges to − limBf and so −f is
Riemann Integrable

(III.) Using a similar argument to (I.) one can show that if limBf = xf and
limBg = xg then fg converges to xfxg

(IV.) Use (III.) since 1/g is defined everywhere on the (closed) interval.

Theorem 1.48. Let f : [a, b] → R be Riemann Integrable. Let c ∈ [a, b] then∫ b

a
f =

∫ c

a
f +

∫ b

c
f

Proof. We note that the set of all partitions of [a, c] ∪ [c, b] is a subset of all
paritions of [a, b]. Hence the filter generated by the filter base Cf = {B(f,P ) :
P is a parition of [a, c]∪[c, b]} is finer than Bf and hence convergent (to the same
limit). That is, the filter base Cf = {B(f,P ) : P is a parition of [a, c]}+{B(f,P ) :

P is a parition of [c, b]} is convergent. It follows that
∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

Remark 1.49. I have silently used here the fact that if F and G are filters over
the same set X, both convergent to say xF and xG respectively, then F + G
converges to xF + xG . I havenn’t actually included a proof of this, however it
probably should be included! Let me know what you think.

Theorem 1.50. (Mean Value Theorem for Integrals) Let f : [a, b] → R be
Riemann Integrable and continuous. Then there exists an ξ ∈ [a, b] such that∫ b

a
f = f(ξ)(b− a).
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Proof. Since [a, b] is compact we know that f attains a minimum and maximum
value on [a, b] say m and M respectively. Note that

(b− a)m ≤ L(f, P ) ≤ U(f, P ) ≤ (b− a)M

For any partition P of [a, b]. Then since Bf is convergent to say x we have that

m ≤ L(f, P )

(b− a)
≤ x

(b− a)
≤ U(f, P )

(b− a)
≤M

By the intermediate value theorem we know that f takes all values between
m and M so there exists an ξ ∈ [a, b] such that f(ξ) = x

(b−a) or equivalently:

(b− a)f(ξ) =
∫ b

a
f .

Remark 1.51. The same approach can be used to prove the generlized Mean
Value Theorem for Integrals which states that if f is Riemann Integrable and
continuous and φ is any integrable function then there is an ξ ∈ [a, b] such that∫ b

a
f(t)φ(t)dt = f(ξ)

∫ b

a
φ(t)dt

Remark 1.52. One can use the Mean Value Theorem for Integrals to prove the
First Fundamental Theorem of Calculus by using a standard argument. The
second Fundamental Theorem of Calculus can be proven in the following way:

Theorem 1.53. (Second Fundamental Theorem of Calculus) If f is Riemann

Integrable and g is any antiderivative of f then
∫ b

a
f = g(b)− g(a).

Proof. Let P be any partition of [a, b]. Then g(b) − g(a) =
∑n

i=1 g(xi) − g(xi)
Since g is differentiable (to f) we can invoke the mean value theorem on each
interval [xi−1, xi] to obtain:

n∑
i=1

g(xi)− g(xi) =

n∑
i=1

f(ξi)(xi − xi−1), for some ξi ∈ (xi−1, xi)

Since inf f(x) ≤ f(ξi) ≤ sup f(x) for x ∈ [xi−1, xi] we have that:

L(f, P ) ≤
n∑

i=1

f(ξi)(xi − xi−1) ≤ U(f, P )

=⇒ g(b)− g(a) =

n∑
i=1

f(ξi)(xi − xi−1) ∈ B(f,P )

Since this is valid for all partitions P , it follows that limBf = g(b)− g(a).

To close the section, we prove that the definiton of the Riemann Integral
here is equivalent to the usual definition of the Riemann Integral. We have
defered this to now so we could demonstrate how the filter definition can be
used to prove the same facts about the integral, without simply appealing to
the more standardized proofs. We will assume for brevity that the reader is
already familiar with tagged partitions and meshs of partitions.
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Theorem 1.54. The Riemann Integral defined in Definition 1.46 is equivalent
to the following definition:∫ b

a
f = s ⇐⇒ for all ε > 0 there exists a δ > 0 and a tagged partition P whose

mesh is less than δ satisfying
∣∣∣∑n−1

i=0 f(ti)(xi+1 − xi)− s
∣∣∣ < ε (?)

Proof. It will be more convenient for us to rewrite (?) in the following form:

s− ε <
n∑

i=1

f(ti)(xi+1 − xi) < s+ ε

(⇒) Suppose Bf is convergent to s, then for all ε > 0 there exists a partition P
such that B(f,P ) ⊆ (s− ε, s+ ε). In particular we can set δ equal to the width
of the largest interval as required in (?), moreover this implies:

s− ε < L(f, P ) < U(f, P ) < s+ ε

Since inf f(x) ≤ f(ti) ≤ sup f(x) on each [xi−1, xi] it follows that:

s− ε < L(f, P ) <

n∑
i=1

f(ti)(xi+1 − xi) < U(f, P ) < s+ ε

i.e. (?) holds.
(⇐) Suppose now that ? holds and let P be a parition of [a, b] satisfying |xi −
xi−1| < δ ∀i. We note that (?) must hold for any choice of tagging of the
intervals [xi−1, xi], in particular for when f(ti) = sup f(x) for x ∈ [xi−1, xi] and
when f(ti) = inf f(x) for x ∈ [xi−1, xi]. Thus it follows that:

s− ε < L(f, P ) < U(f, P ) < s+ ε

For all partitions finer than P . This means any element of N(x) ∈ N (x) we can
find a B(f,P ) ⊆ N(x) using the result above and hence Bf is convergent.

1.4 Applications of Filters to Compactness

Perhaps the most interesting application of filters is to that of Compactness.
Our goal in this section is to work towards a proof of Tychonoff’s Theorem on
the arbitrary product of compact subsets following the approach of Gaal. To do
so we will need to define what the product of two (or more) filters is and prove
a number of Lemmas. In doing so we will obtain a number of results which will
be used to characterise compactness in a more general setting. To begin, let
us note that in a metric space a subset is compact if and only if it satisfies the
Bolzano-Weierstra property - we can generalise this to an arbitrary topological
space using filters as follows:

Theorem 1.55. A topological space X is compact if and only if every filter F
in X has a non-void adherence.
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Proof. Necessity follows from the fact that a every closed family of sets of a
compact set having the finite intersection property has a non-empty intersec-
tion. F satisfies the finite intersection property by (F. 3) and moreover is a
familiy of closed sets, hence

⋂
F∈F F is nonvoid.

To prove sufficiency we proceed by contraposition. Suppose that X is not com-
pact, then there exists a family of closed subsets of X, B, having the finite
intersection property but whose total intersection is void. Then B is a filter
base which generates a filter on X which has void adherence.

This Theorem has an important extension to ultrafilters:

Theorem 1.56. A topological space X is compact if and only is every ultrafilter
in X in convergent

Proof. (⇒) By Theorem 1.55 every Filter in X has a non-void adherence and
so by Theorem 1.37 an ultrafilter U on X must be convergent.
(⇐) Suppose every ultrafilter on X is convergent. Then by Theorem 1.14 every
filter F in X has an ultrafilter U finer than F and so by Lemma 1.35, limU ⊆
adh F 6= ∅.

This characterisation of compactness is so useful that it will become our
definition of compactness when we move to a convergence setting. We now turn
to some definitions and lemmas concerning the products of filters:

Definition 1.57. Let X =
∏
Xs be a product set and let Fs be a filter in each

of the factors Xs. Then the set of all products
∏
Fs where Fs ∈ Fs and Fs = Xs

for all but finitely many indices is a filter base B in X. The filter generated by
this base is called the product of the filters Fs and will be denoted

∏
Fs. It is

the coarsets filter in X such that it’s projection in Xs is Fs.

Lemma 1.58. Let F be a filter in a the product X =
∏
Xs. Then the family

Fs = {Fs} where Fs denotes the projection of F ∈ F onto Xs is a filter in Xs

(called the projection of F into Xs)

Proof. We verify the axioms of a filter:

(F. 1) Fs = ∅ ⇐⇒ F = ∅ which can’t be true since F is a filter

(F. 2) Note that for F1, F2 ∈ F , there is an F3 ∈ F such that F1∩F2 ⊇ F3 which
implies that F1,s ∩ F2,s ⊇ F3,s.

(F. 3) Let As be set in Xs containing Fs of a set F ∈ F . Then the set A = {x :
xs ∈ As} contains F and so it is in F since it is a filter. Hence, As itself
is a projection of a set A ∈ F so that Fs ⊆ As ∈ Fs.

Lemma 1.59. If F ≤ G then Fs ≤ Gs for every index s.

Proof. If Fs ∈ Fs is the projection of F ∈ F then F ∈ G and so Fs ∈ Gs. Hence
Fs ≤ Gs.

12



Lemma 1.60. If U is an ultrafilter in the product set X, then the projection of
U into each of the factors Xs is an ultrafilter

Proof. Let F be a filter in X =
∏
Xs and let Fs denote the projection as

usual. Suppose that we can find some filter Gs in Xs which is strictly finer than
Fs. Then there is a set Gs in Xs such that Fs 6⊆ Gs for every Fs ∈ Fs. We
introduce the nonvoid sets φ(F ) = {x : x ∈ F and xs ∈ Gs}. Then the family
B = {φ(F ) : F ∈ F} is a filter base in X which generates a filter which is not
coarser than F because φ(F ) ⊆ F for every F ∈ F . Moreover, if F ∈ F , then
φ(Fs) ⊆ Gs while Fs 6⊆ Gs so B generates a filter strictly finer than F and so F
is not an ultrafilter. This completes the proof.

Example 1.61. The converse to the previous Lemma does not hold, i.e. we can
find a filter F in X such that its projection into every Xs is an ultrafilter, but
F is not. Let F be the product of a family of ultrafilters Us in the factors Xs

which each contain a fixed point xs. Then by our construction of the product
filter, the point x ∈ X whose sth coordinate is xs is not in F so there exists a
filter G > F containing x so F cannot be an ultrafilter, yet it’s projection onto
each Xs is.

Lemma 1.62. If F is a filter in a product space X, then (adh F)s ⊆ adh Fs

and (limF)s ⊆ limFs for every index s.

Proof. Suppose that x ∈ adh F s that xs ∈ (adh F)s. If Nxs is a neighbourhood
of xs in Xs, then Nx = {ξ : ξ ∈ X, ξs ∈ Nxs

} is a neighbourhood of x ∈ X.
Since x is an adherence point of F we have Nx ∩ F 6= ∅ for every F ∈ F and
so Nxs

∩Fs 6= ∅ for every Fs ∈ Fs. Thus xs ∈ adh Fs and (adh F)s ⊆ adh Fs.
Similarly, if x ∈ limF then there is an F ∈ F such that F ⊆ Nx. Therefore
Fs ⊆ Nxs and this shows that xs ∈ limFs.

Unlike Lemma 1.60, the second part of Lemma 1.62 has a converse. Namely:

Lemma 1.63. A filter F in X is convergent if and only if every projection Fs

in Xs is convergent.

Proof. (⇒) Follows from Lemma 1.62
(⇐) For each index s we choose a point xs in limFs. Let x ∈ X be the point
whose sth coordinate is xs. We show that x ∈ limF . Let O =

∏
Os be an

open set in X which contains x. By the definition of the product topology,
Os = Xs for all but finitely many indices. For each s there is an F s ∈ F such
that F s

s ⊆ Os because xs ∈ Os and each xs ∈ limFs. We may choose F s = X
for all but finitely many indices. Then F =

⋂
F s is a finite intersection and so

F ∈ F . Moreover, F ⊆
∏
F s
s ⊆

∏
Os = O. Hence x ∈ limF .

Remark 1.64. We have actually proven something slightly stronger, namely:
x ∈ limF provided xs ∈ limFs for every s and hence limF ⊇

∏
limFs. Com-

bining this with the rest of Lemma 1.62 we obtain the following result:

Lemma 1.65. If F is a filter in a product space then limF =
∏

limFs.
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Example 1.66. Interestingly, the first half of Lemma 1.62 does not have a
converse even though the second half does. We can construct a counter example
as follows: Let X1 = X2 be the set of reals under the discrete topology. We
consider the family F of all sets F in X = X1 ×X2 having the property that
the lines {(ξ1, x2) : ξ1 ∈ X1} and {(x1, ξ2) : ξ2 ∈ X2} are subsets of F for
all but finitely many values of x1 ∈ X1 and x2 ∈ X2. Then F is clearly a
filter and it’s projections are F1 = X1 and F2 = X2 so adh F1 = X1 and
adh F2 = X2. However, the filter F does not have any adherence points because
the set {(x1, x2)} consisting of the single point (x1, x2) is neighbourhood of
(x1, x2) and its complement is an element of F . This counter example also
demonstrates that in general, adh F and

∏
adh F are different sets.

We now are in a position to prove Tychonoff’s Theorem.

Theorem 1.67. (Tychonoff’s Theorem) The product of any collection of com-
pact topological spaces is compact.

Proof. Let U be an ultrafilter in the product space X =
∏
Xs where each Xs

is compact. Then by Lemma 1.60 the projection Us is an ultrafilter in Xs

and so by Theorem 1.56 it is convergent. Then Lemma 1.63 implies that U is
convergent. Thus every ultrafilter U in X is convergent and so by Theorem 1.56
X is compact.

Remark 1.68. It is well known that Tychonoff’s Theorem is equivalent to the
Axiom of Choice. In this proof we have invoked the Axiom of Choice through
using Zorn’s Lemma to postulate the existence of ultrafilters which we needed
in Theorem 1.56.
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